Simulación de un Sistema Fotovoltaico Aislado en Matlab/Simulink

Autores/as

  • Darwin Orlando Cardozo Sarmiento Universidad Francisco de Paula Santander

Palabras clave:

Conversor, filtro LCL, inversor, MPPT

Resumen

Los sistemas fotovoltaicos aumentan globalmente y la posibilidad de implementar esta tecnología en Colombia es alta debido a su geografía, por lo que es necesario comprender cómo funciona para mejorar su diseño. Una excelente herramienta para estudiar y diseñar sistemas fotovoltaicos es Matlab. Este informe presenta una breve descripción de los modelos de convertidores e inversores, presenta los resultados de una simulación en Simulink de un sistema fotovoltaico aislado diseñado a baja potencia para cargas con características de 120 VRMS a 60 Hz utilizados en Colombia.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

[1] K. Dubey and M. T. Shah, “DESIGN AND SIMULATION OF SOLAR PV SYSTEM,” in Proc. ICACDOT, Pune, India, 2016, pp. 568–573.

[2] K. Sánchez, J. Velandia and S. Chia, “EL SOL COMO ALTERNATIVA PARA PRODUCIR ENERGÍA ELÉCTRICA: PROPUESTA PARQUE INFANTIL PARA LA CIUDAD DE CÚCUTA,” Revista Mundo FESC, vol. 4, no. 8, pp. 32 - 36, Dec. 2014.

[3] X. Liuand, F. Zhuo, Y. Chen and L. Xiong, “Development of Fast Simulation Models for Photovoltaic Generation System Based on Simulink,” in Proc. ECCE, Montreal, QC, Canadá, 2015, pp. 3265 - 3270.

[4] E. Luna-Paipa, M. Laguado-Serrano, S. Sepúlveda-Mora, “Controlador de carga PWM eficiente y de bajo costo para sistemas fotovoltaicos autónomos,” Respuestas, vol. 23, no. 1, pp. 6 - 13, Dec. 2018.

[5] R. Blange, C. Mahanta and A. K. Gogoi, “MPPT of Solar Photovoltaic Cell Using Perturb & Observe and Fuzzy Logic controller Algorithm for Buck-Boost DC-DC Converter,” in Proc. ICEPE, Shillong, India, 2015, pp. 1–5.

[6] K. Basaran and N. S. Cetin, “Designing of a fuzzy controller for grid connected photovoltaic system's converter and comparing with PI controller,” in Proc. ICRERA, Birmingham, UK, 2016, pp. 102–106.

[7] B. P. Nayak and A. Shaw, “Design of MPPT Controllers and PV cells Using MATLAB Simulink and Their Analysis,” in Proc. ICNTE, Navi Mumbai, India, 2017, pp. 1–6.

[8] S. K. Dash, D. Verma, S. Nema and R. K. Nema, “Comparative Analysis of Maximum Power Point (MPP) Tracking Techniques for Solar PV Application using MATLAB Simulink,” in Proc. ICRAIE, Jaipur, India, 2014, pp. 1–7.

[9] A. Islam and Md. I. B. Chowdhury, “A Simulink Based Generalized Model of PV Cell /Array,” in Proc. ICDRET, Dhaka, Bangladesh, 2014, pp. 1–5.

[10] H. H. Nguyen and M. Q. Duong, “High-Performance Coordination for Accurate Matlab Simulink PV Module Simulator based on a Two-Diode Model,” in Proc. ICSET, Hanoi, Vietnam, 2016, pp. 379–383.

[11] M. R. Rashel, A. Albino, M. Tlemcani, T. C. F. Gonçalves and J. Rifath, “MATLAB Simulink modeling of photovoltaic cells for understanding shadow effect,” in Proc. ICRERA, Birmingham, UK, 2016, pp. 747–750.

[12] C. L. Torous, D. Popescu, C. Petrescu and D. V. Balan, “Extremal control of DC/DC Converters in photovoltaic configurations,” in Proc. ICSC, Marrakesh, Morocco, 2016, pp. 211–216.

[13] A. Rachid, F. Kerrour, R. Chenni and H. Djeghloud, “PV Emulator Based Buck Converter using dSPACE Controller,” in Proc. EEEIC, Florence, Italy, 2016, pp. 1–6.

[15] M. H. Uddin, M. A. Baig and M. Ali, “Comparision of ‘Perturb & Observe’ and ‘Incremental Conductance’, Maximum Power Point Tracking algorithms on real environmental conditions,” in Proc. ICE Cube, Quetta, Pakistán, 2016, pp. 313–317.

[16] M. H. Uddin, M. A. Baig and M. Ali, “Comparision of ‘Perturb & Observe’ and ‘Incremental Conductance’, Maximum Power Point Tracking algorithms on real environmental conditions,” in Proc. ICE Cube, Quetta, Pakistán, 2016, pp. 313–317.

[17] S. Jayalath and M. Hanif, “An LCL-filter Design with Optimum Total Inductance and Capacitance,” IEEE Transactions on Power Electronics., vol. PP, no. 99, pp. 1 - 1, Sep. 2017

[18] C. Poongothai and K. Vasudevan, “Design of LCL filter for Grid-interfaced PV system based on Cost minimization,” in Proc. PEDES, Trivandrum, India, 2016, pp. 1–6.

[19] J. Xu, S. Xie, L. Huang and L. Ji, “Design of LCL-filter considering the control impact for grid-connected inverter with one current feedback only,” IET Power Electronics., vol. 10, no. 11, pp. 1324 - 1332, Sep. 2017.

[15] M. H. Uddin, M. A. Baig and M. Ali, “Comparision of ‘Perturb & Observe’ and ‘Incremental Conductance’, Maximum Power Point Tracking algorithms on real environmental conditions,” in Proc. ICE Cube, Quetta, Pakistán, 2016, pp. 313–317.

[17] S. Jayalath and M. Hanif, “An LCL-filter Design with Optimum Total Inductance and Capacitance,” IEEE Transactions on Power Electronics., vol. PP, no. 99, pp. 1 - 1, Sep. 2017

[18] C. Poongothai and K. Vasudevan, “Design of LCL filter for Grid-interfaced PV system based on Cost minimization,” in Proc. PEDES, Trivandrum, India, 2016, pp. 1–6.

[19] J. Xu, S. Xie, L. Huang and L. Ji, “Design of LCL-filter considering the control impact for grid-connected inverter with one current feedback only,” IET Power Electronics., vol. 10, no. 11, pp. 1324 - 1332, Sep. 2017.
Simulación de un Sistema Fotovoltaico Aislado en Matlab/Simulink

Descargas

Publicado

2019-01-01

Cómo citar

Cardozo Sarmiento, D. O. (2019). Simulación de un Sistema Fotovoltaico Aislado en Matlab/Simulink. Mundo FESC, 9(17), 16–22. Recuperado a partir de https://www.fesc.edu.co/Revistas/OJS/index.php/mundofesc/article/view/330

Número

Sección

Articulos