Señales EOG: Una revisión sobre procesamiento y aplicaciones

Autores/as

  • David Escobar-Valencia Sena
  • Fernando Jesús Regino-Ubarnes Sena
  • Diana Yamileth Velásquez-Maldonado Sena

Palabras clave:

Adquisición de datos, discapacidad, electrooculografía, electrodos, tratamiento de señales.

Resumen

En este trabajo se presenta una revisión sobre procesamiento y aplicaciones de señales de electrooculografía. En primer lugar, se da a conocer el marco general sobre el uso de las señales mencionadas. Posteriormente se describen investigaciones de vanguardia sobre sistemas basados en señales electrooculografía. El objetivo de esta revisión es detectar los avances de los sistemas basados en dichas señales para futuros desarrollos tecnológicos.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

A. Bertomeu-Motos et al., “User activity recognition system to improve the performance of environmental control interfaces: A pilot study with patients,” J. Neuroeng. Rehabil., vol. 16, no. 1, pp. 1–9, 2019.

N. Barbara, T. A. Camilleri, and K. P. Camilleri, “A comparison of EOG baseline drift mitigation techniques,” Biomed. Signal Process. Control, vol. 57, p. 101738, 2020.

J. Ryu, M. Lee, and D. H. Kim, “EOG-based eye tracking protocol using baseline drift removal algorithm for long-term eye movement detection,” Expert Syst. Appl., vol. 131, pp. 275–287, 2019.

Z. Lv, Y. Wang, C. Zhang, X. Gao, and X. Wu, “An ICA-based spatial filtering approach to saccadic EOG signal recognition,” Biomed. Signal Process. Control, vol. 43, pp. 9–17, 2018.

B. Zhang, N. Bi, C. Zhang, X. Gao, and Z. Lv, “Robust EOG-based saccade recognition using multi-channel blind source deconvolution,” Biomed. Eng. (NY)., vol. 64, no. 3, pp. 309–324, 2019.

V. P. Brahmaiah, Y. P. Sai, and M. N. Giriprasad, “A new framework for recognizing normal and epileptic seizure from eye movement signals using genetic based convolutional neural network,” Trait. du Signal, vol. 37, no. 3, pp. 493–501, 2020.

W. Du Chang, H. S. Cha, and C. H. Im, “Removing the interdependency between horizontal and vertical eye-movement components in electrooculograms,” Sensors (Switzerland), vol. 16, no. 2, 2016.

R. Stoean et al., “A hybrid unsupervised-Deep learning tandem for electrooculography time series analysis,” PLoS One, vol. 15, no. 7, 2020.

A. López, F. Ferrero, and O. Postolache, “An affordable method for evaluation of ataxic disorders based on electrooculography,” Sensors (Switzerland), vol. 19, no. 17, pp. 1–16, 2019.

S. K. Ameri et al., “Imperceptible electrooculography graphene sensor system for human–robot interface,” npj 2D Mater. Appl., vol. 2, no. 1, pp. 1–7, 2018.

A. J. Golparvar and M. K. Yapici, “Electrooculography by Wearable Graphene Textiles,” IEEE Sens. J., vol. 18, no. 21, pp. 8971–8978, 2018.

A. J. Golparvar and M. K. Yapici, “Graphene Smart Textile-Based Wearable Eye Movement Sensor for Electro-Ocular Control and Interaction with Objects,” J. Electrochem. Soc., vol. 166, no. 9, 2019.

V. Toral et al., “Cost-Effective Printed Electrodes Based on Emerging Materials Applied to Biosignal Acquisition,” IEEE Access, vol. 8, pp. 127789–127800, 2020.

A. G. Robson et al., “ISCEV guide to visual electrodiagnostic procedures,” Doc. Ophthalmol., vol. 136, no. 1, pp. 1–26, 2018.

Y. Jia and C. W. Tyler, “Measurement of saccadic eye movements by electrooculography for simultaneous EEG recording,” Behav. Res. Methods, vol. 51, no. 5, pp. 2139–2151, 2019.

A. Pal, A. K. Gautam, and Y. N. Singh, “Evaluation of bioelectric signals for human recognition,” Procedia Comput. Sci., vol. 48, no. C, pp. 746–752, 2015.

S. Arslan Tuncer and T. Kaya, “True Random Number Generation from Bioelectrical and Physical Signals,” Comput. Math. Methods Med., vol. 2018, pp. 1–11, 2018.

P. Wangmo, G. Ramyavani, K. S. Iyer, and V. Karthik Raj, “Two electrode ECG and EOG system for monitoring applications,” Int. J. Innov. Technol. Explor. Eng., vol. 8, no. 11, pp. 262–265, 2019.

A. López, M. Fernández, H. Rodríguez, F. Ferrero, and O. Postolache, “Development of an EOG-based system to control a serious game,” Meas. J. Int. Meas. Confed., vol. 127, pp. 481–488, 2018.

C. T. Lin et al., “EOG-Based Eye Movement Classification and Application on HCI Baseball Game,” IEEE Access, vol. 7, pp. 96166–96176, 2019.

X. Ding, Z. Lv, C. Zhang, X. Gao, and B. Zhou, “A Robust Online Saccadic Eye Movement Recognition Method Combining Electrooculography and Video,” IEEE Access, vol. 5, pp. 17997–18003, 2017.

W. Tang, A. Wang, S. Ramkumar, and R. K. R. Nair, “Signal identification system for developing rehabilitative device using deep learning algorithms,” Artif. Intell. Med., vol. 102, p. 101755, 2020.

S. Fang, A. F. Hussein, S. Ramkumar, K. S. Dhanalakshmi, and G. Emayavaramban, “Prospects of electrooculography in human-computer interface based neural rehabilitation for neural repair patients,” IEEE Access, vol. 7, pp. 25506–25515, 2019.

D. Y. Kim, C. H. Han, and C. H. Im, “Development of an electrooculogram-based human-computer interface using involuntary eye movement by spatially rotating sound for communication of locked-in patients,” Sci. Rep., vol. 8, no. 1, pp. 1–10, 2018.

J. Xiao, J. Qu, and Y. Li, “An Electrooculogram-Based Interaction Method and Its Music-on-Demand Application in a Virtual Reality Environment,” IEEE Access, vol. 7, pp. 22059–22070, 2019.

A. J. Molina-Cantero, C. Lebrato-Vazquez, M. Merino-Monge, R. Quesada-Tabares, J. A. Castro-Garcia, and I. M. Gomez-Gonzalez, “Communication technologies based on voluntary blinks: Assessment and design,” IEEE Access, vol. 7, pp. 70770–70798, 2019.

A. Tonin, A. Jaramillo-Gonzalez, A. Rana, M. Khalili-Ardali, N. Birbaumer, and U. Chaudhary, “Auditory Electrooculogram-based Communication System for ALS Patients in Transition from Locked-in to Complete Locked-in State,” Sci. Rep., vol. 10, no. 1, pp. 1–10, 2020.

P. Tian et al., “A hierarchical classification method for automatic sleep scoring using multiscale entropy features and proportion information of sleep architecture,” Biocybern. Biomed. Eng., vol. 37, no. 2, pp. 263–271, 2017.

D. JIANG, Y. MA, and Y. WANG, “Sleep stage classification using covariance features of multi-channel physiological signals on Riemannian manifolds,” Comput. Methods Programs Biomed., vol. 178, pp. 19–30, 2019.

C. E. Kuo and G. T. Chen, “A Short-Time Insomnia Detection System Based on Sleep EOG with RCMSE Analysis,” IEEE Access, vol. 8, pp. 69763–69773, 2020.

H. Korkalainen et al., “Accurate Deep Learning-Based Sleep Staging in a Clinical Population with Suspected Obstructive Sleep Apnea,” IEEE J. Biomed. Heal. Informatics, vol. 24, no. 7, pp. 2073–2081, 2020.

S. I. Dimitriadis, C. Salis, and D. Linden, “A novel, fast and efficient single-sensor automatic sleep-stage classification based on complementary cross-frequency coupling estimates,” Clin. Neurophysiol., vol. 129, no. 4, pp. 815–828, 2018.

F. Latifoǧlu, M. Y. Esas, and E. Demirci, “Diagnosis of attention-deficit hyperactivity disorder using EOG signals: A new approach,” Biomed. Tech., vol. 65, no. 2, pp. 149–164, 2020.

H. Iwaki et al., “Using spontaneous eye-blink rates to predict the motor status of patients with parkinson’s disease,” Intern. Med., vol. 58, no. 10, pp. 1417–1421, 2019.

M. F. Reschke, O. I. Kolev, and G. Clément, “Eye-Head Coordination in 31 Space Shuttle Astronauts during Visual Target Acquisition,” Sci. Rep., vol. 7, no. 1, pp. 4–11, 2017.

L. Minati, N. Yoshimura, and Y. Koike, “Hybrid Control of a Vision-Guided Robot Arm by EOG, EMG, EEG Biosignals and Head Movement Acquired via a Consumer-Grade Wearable Device,” IEEE Access, vol. 4, pp. 9528–9541, 2016.

K. Sharma, N. Jain, and P. K. Pal, “Detection of eye closing/opening from EOG and its application in robotic arm control,” Biocybern. Biomed. Eng., vol. 40, no. 1, pp. 173–186, 2020.

M. I. Rusydi, T. Okamoto, S. Ito, and M. Sasaki, “Controlling 3-D movement of robot manipulator using electrooculography,” Int. J. Electr. Eng. Informatics, vol. 10, no. 1, pp. 170–185, 2018.

J. Zhang, B. Wang, C. Zhang, Y. Xiao, and M. Y. Wang, “An EEG/EMG/EOG-based multimodal human-machine interface to real-time control of a soft robot hand,” Front. Neurorobot., vol. 13, 2019.

S. Crea et al., “Feasibility and safety of shared EEG/EOG and vision-guided autonomous whole-arm exoskeleton control to perform activities of daily living,” Sci. Rep., vol. 8, no. 1, pp. 1–9, 2018.

C. Santhanakrishnan, T. Peermeer Labbai, S. S. Dudala, and Y. Sai Santhosh Nag, “A salutary biotechnical approach for explosive identification and border patrol using electrophysiological signals,” Int. J. Eng. Technol., vol. 7, no. 2, pp. 106–109, 2018.

G. W. Gang, C. H. Min, and T. S. Kim, “Development of eye-tracking system using dual machine learning structure,” Trans. Korean Inst. Electr. Eng., vol. 66, no. 7, pp. 1111–1116, 2017.

M. H. Lee, J. Williamson, D. O. Won, S. Fazli, and S. W. Lee, “A High Performance Spelling System based on EEG-EOG Signals with Visual Feedback,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 26, no. 7, pp. 1443–1459, 2018.

A. López, F. Ferrero, D. Yangüela, C. Álvarez, and O. Postolache, “Development of a computer writing system based on EOG,” Sensors (Switzerland), vol. 17, no. 7, pp. 1–20, 2017.

M. Yildiz and H. Ö. Ülkütaş, “A New PC-Based Text Entry System Based on EOG Coding,” Adv. Human-Computer Interact., vol. 2018, pp. 1–8, 2018.

R. Ouyang, Z. Lv, X. Wu, C. Zhang, and X. Gao, “Design and Implementation of a Reading Auxiliary Apparatus Based on Electrooculography,” IEEE Access, vol. 5, pp. 3841–3847, 2017.

R. Zhang et al., “An EOG-Based Human-Machine Interface to Control a Smart Home Environment for Patients with Severe Spinal Cord Injuries,” IEEE Trans. Biomed. Eng., vol. 66, no. 1, pp. 89–100, 2019.

Q. Huang et al., “An EOG-based human-machine interface for wheelchair control,” IEEE Trans. Biomed. Eng., vol. 65, no. 9, pp. 2023–2032, 2018.

J. Mart et al., “Open Software/Hardware Platform for Human-Computer Interface Based on Electrooculography (EOG) Signal Classificatio,” sensors, vol. 20, 2020.

A. M. Choudhari and V. Jonnalagedda, “Bio-potentials for smart control applications,” Health Technol. (Berl)., vol. 9, no. 5, pp. 765–789, 2019.

Y. Li, S. He, Q. Huang, Z. Gu, and Z. L. Yu, “A EOG-based switch and its application for ‘start/stop’ control of a wheelchair,” Neurocomputing, vol. 275, pp. 1350–1357, 2018.

N. R. Anandan, “Electrooculogram (EOG) signal classification using moving average technique and its application to drive direct current motors,” Recent Adv. Electr. Electron. Eng., vol. 11, no. 2, pp. 153–159, 2017.

J. Heo, H. Yoon, and K. S. Park, “A novel wearable forehead EOG measurement system for human computer interfaces,” Sensors (Switzerland), vol. 17, no. 7, 2017.

J. I. Al-Nabulsi, “A Novel Approach to Wheelchair Design and Operation Using Multi-Function Controller,” J. Comput. Sci., vol. 16, no. 7, pp. 1029–1041, 2020.

A. Jalilifard et al., “Use of spontaneous blinking for application in human authentication,” Eng. Sci. Technol. an Int. J., vol. 23, no. 4, pp. 903–910, 2020.

G. Teng, Y. He, H. Zhao, D. Liu, J. Xiao, and S. Ramkumar, “Design and Development of Human Computer Interface Using Electrooculogram With Deep Learning,” Artif. Intell. Med., vol. 102, pp. 1–10, 2020.

W.-L. Zheng et al., “Vigilance Estimation Using a Wearable EOG Device in Real Driving Environment,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 1, pp. 170–184, 2020.

D. Yuan et al., “A closed-loop electrical stimulation system triggered by EOG for acupuncture therapy,” Syst. Sci. Control Eng., vol. 8, no. 1, pp. 128–140, 2020.

L. V. Hladek, B. Porr, and W. O. Brimijoin, “Real-time estimation of horizontal gaze angle by saccade integration using in-ear electrooculography,” PLoS One, vol. 13, no. 1, pp. 1–24, 2018.

A. Favre-Félix et al., “Absolute Eye Gaze Estimation With Biosensors in Hearing Aids,” Front. Neurosci., vol. 13, pp. 1–10, 2019.

E. Kovács, A. Kosztolányi, and A. Kis, “Rapid eye movement density during REM sleep in dogs (Canis familiaris),” Learn. Behav., vol. 46, no. 4, pp. 554–560, 2018.

Descargas

Publicado

2022-01-10

Cómo citar

Escobar-Valencia, D. ., Regino-Ubarnes, F. J. ., & Velásquez-Maldonado, D. Y. . (2022). Señales EOG: Una revisión sobre procesamiento y aplicaciones. Mundo FESC, 12(23), 244–258. Recuperado a partir de https://www.fesc.edu.co/Revistas/OJS/index.php/mundofesc/article/view/1206

Número

Sección

Articulos