Estudio de alternativas de sistemas fotovoltaicos para la Aeronáutica Civil en el Aeropuerto Camilo Daza

Authors

  • Sebastián Loaiza Elejalde Universidad Francisco de Paula Santander
  • Sergio Basilio Sepúlveda Mora Universidad Francisco de Paula Santander

Keywords:

Photovoltaic System, Pre-feasibility study, investment project, MGA methodology

Abstract

Considering the growing adoption and success of photovoltaic systems in the industry, this paper studied the conditions, cost, and benefits of implementing two alternatives of these systems. A grid-tied photovoltaic system, and a hybrid grid-tied photovoltaic system with batteries, for the Civil Aeronautic technical support building, located in the Camilo Daza Airport. For this, information related to meteorological conditions and electric load profiles were compiled. Then, the systems were designed and simulated with HOMER Grid and PVSyst software. Finally, the benefits and costs for each case were evaluated by analyzing the Net Present Cost and the payback period. As a result, implementing the grid-tied photovoltaic system is more profitable, due to its Net Present Cost of $63.910.000 COP and a payback period of 6 years, while the alternative system has a net present value of $12.800.000 COP and 12 years of payback period. On the other hand, by implementing the hybrid system, the building would have backup power for the lighting during an outage which represents an important technical advantage for this system.

Downloads

Download data is not yet available.

References

Congreso de la República, “Ley 1715 de 2014,” 13 de mayo, 2014. [En línea]. Disponible en: http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html

L. Mayerly and A. Jimenez, “Diseño de un Sistema Solar Fotovoltaico Autónomo para la Estación Aeronáutica Araracuara de la Aeronáutica Civil de Colombia”, Universidad Distrital Francisco José de Caldas, 2017

W. Contreras, M. G. Galban, and S. B. Sepúlveda, “Análisis estadístico de la radiación solar en la ciudad de Cúcuta”, Entre Cienc. e Ing., vol. 12, no. 23, p. 16, Mar. 2018

J. E. García Garnica, S. B. Sepúlveda Mora, and J. Ferreira Jaimes, “Viabilidad técnico-económica de un sistema fotovoltaico en una planta de tratamiento de agua”, INGE CUC, vol. 14, no. 1, pp. 41–51, Jan. 2018

D. A. Carrillo, “Estudio de factibilidad téctico-económico para la implementación de un sistema fotovoltaico conectado a la red en la empresa Arcilobillos S.A.S.”, Universidad Francsico de Paula Santander, 2014

Departamento Nacional de Planeación, “Documento guía del módulo de capacitación en teoría de proyectos”, 2016

Solar PathFinder TM, “Instruction Manual For The SolarPathfinder UnitTM Item number: PF, and PF-TC”, Linden, TN 37096, 2016

EPM, Autogeneración a Pequeña Escala (AGPE) y Generación Distribuida (GD). Colombia: CREG, 2018, p. 17

The European Commission’s science and knowledge service, “JRC Photovoltaic Geographical Information System (PVGIS) - European Commission,” European Commission, 2019. [Online]. Available: https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html#MR

C. Thompson, “AC vs DC coupling in utility-scale solar plus storage projects”, Cleveland, EATON Inc., 2016

W. Suponthana, “AC Counpling Vs DC Coupling,” in 7th Meeting of the ASIA SOLAR ENERGY FORUM, 2014, p. 16

A. Chiş and V. Koivunen, “Collaborative approach for energy cost minimization in smart grid communities”, in 2017 IEEE Global Conference on Signal and Information Processing, GlobalSIP 2017 - Proceedings, 2018, vol. 2018-Janua, pp. 1115–1119

IDEAM, “Cartas Climatológicas-Medias Mesuales Aeropuerto Camilo Daza”, 1999. [Online]. Available: http://bart.ideam.gov.co/cliciu/cucuta/temperatura.htm. [Accessed: 24-Feb-2020]

G. Piraquive, M. Matamoros, E. Cespedes, and J. Rodríguez, “Actualización de la tasa de rendimiento del capital en Colombia bajo la metodología de Harberger,” 2018

R. Ortega, “Inflación total en Colombia 2018 IPC,” Revista Dinero, 2019. [En línea]. Disponible en: https://www.dinero.com/economia/articulo/inflacion-total-en-colombia-2018-ipc/265860. [Accessed: 24-Feb-2020]

HOMER Energy, “Advanced Storage Module,” HOMER Pro 3.13 Glosary, 2018. [Online]. Available: https://www.homerenergy.com/products/pro/docs/latest/advanced_storage_module.html. [Accessed: 27-Feb-2020]

L. Blank and A. Traquin, “Ingeniería Económica,” Mc. Graw Hill, vol. 6, p. 846, 2006

HOMER energy, “Discount Factor,” HOMER Pro 3.13 Glorsary, 2018. [Online]. Available: https://www.homerenergy.com/products/pro/docs/latest/discount_factor.html. [Accessed: 26-Feb-2020]

Y. Li, W. Gao, and Y. Ruan, “Performance investigation of grid-connected residential PV-battery system focusing on enhancing self-consumption and peak shaving in Kyushu, Japan”, Renew. Energy, vol. 127, pp. 514–523, Nov. 2018

HOMER Energy, “Resilience,” HOMER Grid 1.2 Glosary, 2019. [Online]. Available: https://www.homerenergy.com/products/grid/docs/1.2/resilience.html

Published

2022-01-01

How to Cite

Loaiza Elejalde, S. ., & Sepúlveda Mora , S. B. . (2022). Estudio de alternativas de sistemas fotovoltaicos para la Aeronáutica Civil en el Aeropuerto Camilo Daza. Mundo FESC Journal, 12(23), 7–22. Retrieved from https://www.fesc.edu.co/Revistas/OJS/index.php/mundofesc/article/view/1006

Issue

Section

Articulos