Use of geophysics to determine the soil profile in the geological formations of the city of Ocaña, N.S

Authors

  • Romel Jesús Gallardo-Amaya Universidad Francisco de Paula Santander Ocaña
  • Luís Fernando Ortega-Lozano Universidad Francisco de Paula Santander Ocaña
  • Gustavo Guerrero-Gómez Universidad Francisco de Paula Santander Ocaña

Keywords:

Geophysical test, soil profile, environmental noise, shear wave velocity.

Abstract

At present, the use of geophysical techniques to establish the shear wave velocity profile of soil has become widespread, one of these techniques corresponds to refraction by micro-tremors, which makes use of environmental noise to measure the shear wave velocity - Vs, a parameter that allows establishing the soil profile according to what is indicated in the Reglamento Colombiano de Construcción Sismo Resistente. For the development of the research, geophysical tests were carried out in 7 sectors of the south-eastern area of the city, 15 lines in sectors with the presence of materials from a geological formation of sedimentary origin, and 15 in a sector with materials from a geological formation of igneous origin. The sounding lines were carried out with an extension of 58 m, to establish the variation of shear wave velocity in the upper 30 m of the soil profile. It was found that the shear wave velocities in the soil profile with materials of sedimentary origin are lower than those determined in the soil profile with materials derived from igneous rocks. The mean values of shear wave velocity determined were 402 m / s for the 30 m soil profile with materials of sedimentary origin and 688 m / s for the soil profile of igneous origin. These values indicate, according to the Norma Sismo Resistente Colombiana, a type C soil profile. Additionally, the determining shear wave velocity profiles indicate that there is significant variability in the different sectors of the city where there are formation materials of sedimentary origin.

Downloads

Download data is not yet available.

References

A. Yong, A. Martin, y J. Boatwright, “Precision of VS30 values derived from noninvasive surface wave methods at 31 sites in California”, Soil Dynamics and Earthquake Engineering, Vol. 127, pp. 1-13, 2019, https://doi.org/10.1016/j.soildyn.2019.105802

P. Kearey, M. Brooks, y I. Hill. An introduction to geophysical exploration. United State: John Wiley & Sons, Primera Edición, 2013. https://cutt.ly/IWeP9VE

S. Foti, G. Lai, G. J. Rix, y C. Strobbia. Surface Wave Methods for Near-Surface Site Characterization. UK: CRC Press Taylor & Francis Group, 2014.

Asociación Colombiana De Ingeniería Sísmica. Requisitos Generales de Diseño y Construcción Sismo Resistente. Colombia: Asociación Colombiana De Ingeniería Sísmica, 2010. https://cutt.ly/TWeAiCq

A. Pancha, J. G. Anderson, J. N. Louie, y S. K. Pullammanappallil, “Measurement of shallow shear wave velocities at a rock site using the ReMi technique”, Soil Dynamics and Earthquake Engineering. Vol. 28 (7), pp. 522-535, 2008, https://doi.org/10.1016/j.soildyn.2007.08.005.

M. Sáez, C. Pastén, S. Ruiz, F. Leyton, y J. Salomón, “Efectos de sitio para Ingenieros Geotécnicos, estudio del valle Parkway”, Obras y Proyectos. Vol 16, pp. 6-30, 2010. http://dx.doi.org/10.4067/S0718-28132014000200001

S. Coccia, V. Del Gaudio, N. Venisti, y J. Wasowski, “Application of Refraction Microtremor (ReMi) technique for determination of 1-D shear wave velocity in a landslide area”, Journal of Applied Geophysics. Vol. 71, pp. 2-89, 2010, https://doi.org/10.1016/j.jappgeo.2010.05.001

J. N. Louie, “Faster Better: Shear-Wave Velocity to 100 Meters Depth From Refraction Microtremor Arrays”, Bulletin of the Seismological Society of America. Vol. 91(2), pp. 347-364, 2001. https://doi.org/10.1785/0120000098

B. Rosenblad, y J. Li, “Comparative Study of Refraction Microtremor (ReMi) and Active Source Methods for Developing Low-Frequency Surface Wave Dispersion Curves J”, Environmental and Engineering Geophysics. Vol. 14(3), pp. 101-154, 2009. https://doi.org/10.2113/JEEG14.3.101

J. Ramirez, y L. Aldrich. La Transición océano-continente en el suroeste de Colombia. Colombia: Editora Guadalupe ltda. 1997.

A. J. Alfaro, “Correlación entre el valor N del ensayo de penetración estándar y velocidad de ondas de corte para arcillas en Bogotá-Colombia”, Revista Épsilon. Vol. 8, pp. 13-23, 2007 https://ciencia.lasalle.edu.co/ep/vol1/iss8/3/

B. Kirar, B. K. Maheshwari y P. Muley, “Correlation between shear wave velocity (vs) and SPT resistance (N) for Roorkee region”, IJGGE, vol. 2, no. 9, pp. 1-11, 2016. https://link.springer.com/content/pdf/10.1007/s40891-016-0047-5.pdf

A. Hara, T. Ohta, M. Niwa, S. Tanaka, y T. Banno, “Shear modulus and shear strength of cohesive soils”, Soil and Foundations Vol. 14, pp. 1 – 12, 1974. https://www.jstage.jst.go.jp/article/sandf1972/14/3/14_3_1/_article/-char/ja/

T. Satoh, H. Kawase y S. Matsushima, “Estimation of S-Wave Velocity Structures in and around the Sendai Basin, Japan, Using Array Records of Microtremors”, BSSA, vol. 91, no. 2, pp. 206–218, 2001, https://doi.org/10.1785/0119990148

Y. Ohta, y N. Goto, “Empirical shear wave velocity equations in terms of characteristics soil indexes, Earthq. Eng. Struc. Dyn Vol. 6: pp. 167-187, 1978, https://onlinelibrary.wiley.com/doi/abs/10.1002/eqe.4290060205

T. M. K. Akin, S. L. Kramer y T. Topal, “Empirical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey)”, Engineering geology, vol. 119, no. 1-2, pp. 1-17, 2011, https://doi.org/10.1016/j.enggeo.2011.01.007

Japan Road Association. Specifications for Highway Bridges, Part V, Seismic Design. Japan: Road Association, 2012. http://www.road.or.jp/english/publication/index.html

V. H. Garduño, J. Chávez, J. Aguirre, R. Vázquez, H. Mijares, I. Israde y R. Pérez, “Zonificación de los periodos naturales de oscilación superficial en la ciudad de Pátzcuaro, Mich., México, con base en microtremores y estudios de paleosismología”, Revista mexicana de ciencias geológicas, vol. 26, no. 3, pp. 623-637, 2009, https://cutt.ly/iWeJLAJ

R. Hernández, C. Fernández y M. Baptista. Metodología de la investigación. México: McGraw-Hill, 2014.

R. J. Gallardo, T. E. Barbosa y A. A. Macgregor, “Investigación geotécnica para la estabilización de las laderas del barrio San Fermín, municipio de Ocaña, departamento de Norte de Santander (Colombia)”, Inge Cuc, vol. 9, no. 2, pp. 66-74, 2013, https://cutt.ly/iWeKBdW

J. M. Dufour, A. Farhat, L. Gardiol, y L. Khalaf. “Simulation-based Finite Sample Normality Tests in Linear Regressions”, Econometrics Journal. Vol. 1, pp. 154-173, 1998.

C. Morales, M. Schmitz, y S, Pullammanappallil, “Calibration of the geological/geophysical subsurface model for barquisimeto and cabudare using seismic methods and surface response spectra”, Boletin de Geología. Vol. 37(1), pp. 57-66, 2015, https://cutt.ly/VWeLrdG

E. Seier, “Comparison of tests for univariate normality”, InterStat Statistical Journal, vol. 1, pp. 1-17, 2002, https://cutt.ly/UWeCosN

Published

2022-01-10

How to Cite

Gallardo-Amaya, R. J. ., Ortega-Lozano, L. F. ., & Guerrero-Gómez, G. . (2022). Use of geophysics to determine the soil profile in the geological formations of the city of Ocaña, N.S. Mundo FESC Journal, 12(23), 134–143. Retrieved from https://www.fesc.edu.co/Revistas/OJS/index.php/mundofesc/article/view/1197

Issue

Section

Articulos