Comparative analysis of thermal and mechanical properties of straw and compressed earth blocks versus traditional masonry products

Authors

  • Carmen Xiomara Díaz-Fuentes Universidad Francisco de Paula Santander
  • Sergio Alejandro Ríos-Cruz Universidad Francisco de Paula Santander
  • Sergio Andrés Cano-Macias Universidad Francisco de Paula Santander

Keywords:

Thermal insulation, block, energy efficiency, straw, constructive solutions

Abstract

Straw is a material with benefits of resistance to humidity, thermal and acoustic insulation. Therefore, this paper studies thermal and mechanical properties of a constructive solution manufactured with straw and compressed earth, in order to compare it with traditional systems. The methodology is applied research and was developed in 3 phases: characterization of thermal and mechanical properties of the material, analysis of the temperature behaviour of 4 product types through simulations in ANSYS and development at 1:1 scale of 4 block types. The results obtained are contrasted with literature of traditional systems. The results show improvements in thermal performance of the composite material of straw and compressed earth, compared to products made of clay, concrete, adobe, among others. Nevertheless, the characterization of mechanical strength is inferior to traditional products. Notwithstanding, the material meets minimum non-structural standards. Finally, temperature behaviour of perforated block typologies reduces interior surfaces 7.31 °C, compared to solid typologies. The feasibility of implementing new construction solutions is based the recognition of the properties of the material and its benefits for architecture.

Downloads

Download data is not yet available.

References

J.M. Torres, “Análisis del Programa Especial Concurrente para el desarrollo rural sustentable en México”, Rev. Des. Loc. Sost., México, 2013

J. Mas, C. Kirschbaum y J. Obando, “Vivienda rural sustentable: investigación, transferencia y autoconstrucción. El Puestito-Tucumán, Argentina,” Univ. Nac. Córdoba Arg., 2014

J.E. Muñoz Moreno, “Modelo de vivienda rural sostenible,” Univ. Pil. Col., 2015

J.A. Coronado Ruiz, “Hábitat rural y hábitat autónomo: nuevos escenarios hacia una nueva ruralidad,” Rev. Univ. de la Salle, vol. 55, pp. 99-114, 2011

J.A. Velandia, “Prototipo de vivienda social replicable en la zona rural de Bochalema, Norte de Santander,” Univ. La Gran Colombia, 2018

Departamento Nacional de Planeación, “Proyecto Tipo,” Bogotá D.C., Colombia, 2017

Departamento Nacional de Planeación, “Proyecto de Construcción de Vivienda en el Sector Rural,” Ocaña., Colombia, 2018

G. Ruiz, X. Zhang, W.F. Edris, I. Cañas and L. Garijo, “A comprehensive study of mechanical properties of compressed earth blocks,” Const. and Build. Materials, vol. 176, pp. 566-572, 2018

T.E. Elahi, A.R. Shahriar and M.S. Islam, “Engineering characteristics of compressed earth blocks stabilized with cement and fly ash,” Const. and Build. Materials, vol. 227, pp. 122367, 2021

E.R. Teixeira, G.P. Machado, A.D. Junior, C. Guarnier, J. Fernandes, S.M. Silva and R. Mateus, “Mechanical and thermal performance characterisation of compressed earth blocks,” Energ., vol. 13, no. 11, pp. 2978, 2020

N. Jannat, A. Hussien, B. Abdullah and A. Cotgrave, “Application of agro and non-agro waste materials for unfired earth blocks construction: A review,” Const. and Build. Materials, vol. 254, pp. 119346, 2020

S. Larbi, A. Khaldi, W. Maherzi and N.E. Abriak, “Formulation of compressed earth blocks stabilized by glass waste activated with NaOH solution,” Sustainability, vol. 14, no. 1, pp. 102, 2021

S.O. Sore, A. Messan, E. Prud'Homme, G. Escadeillas and F. Tsobnang, “Stabilization of compressed earth blocks (CEBs) by geopolymer binder based on local materials from Burkina Faso,” Const. and Build. Materials, vol. 165, pp. 333-345, 2018

B.S. Waziri and Z.A. Lawan, “Properties of compressed stabilized earth blocks (CSEB) for low-cost housing construction: a preliminary investigation,” Int. J. Sust. Const. Engin. and Tech., vol. 4, no. 2, pp. 39-46, 2013

G. Mutani, C. Azzolino, M. Macrì and S. Mancuso, “Straw buildings: A good compromise between environmental sustainability and energy-economic savings,” Appl. Sci., vol. 10, no. 8 2858, 2020

R. Gallegos-Ortega, T. Magaña-Guzmán, J. A. Reyes-López and M. S. Romero-Hernández, “Thermal behavior of a straw bale building from data obtained in situ. A case in Northwestern México,” Building and Environment, vol. 124, pp. 336-341, 2017

C. X. Diaz Fuentes, J.J. Mancilla and M.C. Pérez, “Physical-thermal straw properties advantages in the design of a sustainable panel-type construction system to be used as an architectural dividing element,” J. Phys.: Conf. Series, vol. 1587, pp. 1-7, Aug. 2020

M.P. Rojas, J.M. Grimaldo and C.X. Fuentes, “Physical thermal properties and comparative analysis of the ecological straw constructive modules,” J. Phys.: Conf. Series, vol. 1708, no. 1, pp. 012016, Dec. 2020

A. Chaussinand, J.L. Scartezzini and V. Nik, “Straw bale: A waste from agriculture, a new construction material for sustainable buildings,” Ener. Procedia, vol. 78, pp. 297-302, 2015

S. Cascone, R. Rapisarda and D. Cascone, “Physical properties of straw bales as a construction material: A review,” Sustainability, vol. 11, no. 12, pp. 3388, 2019

Plastics - Determination of thermal conductivity and thermal diffusivity - Part 2: Transient plane heat source, ISO 22007-2:2015, International Organization for Standarization, 2015

Concretos. Ensayo de Resistencia a la compression de espcimenes cilindrico de concreto, NTC 673, Instituto Colombiano de Normas Técnicas y Certificación, Colombia, 2018

A.P. Colmenares, J. Sanchez and C.X. Díaz, “Comparative thermal analysis of extruded ceramic products between multi perforated brick and modified bricks in cells distribution,” J. Phys.: Conf. Series, vol. 1386, no. 1, pp. 012130, Nov. 2019

Instituto de Hidrología, Meteorología y Estudios Ambientales “Atlas Interactivo de Colombia” ideam.gov.co http://atlas.ideam.gov.co/presentacion/

J. Sánchez-Molina, C.X. Díaz-Fuentes and A.P. Colmenares-Uribe, “Utilization of agro-industrial waste to improve thermal behavior of products made of fired clay for traditional masonry,” J. Phys.: Conf. Series, vol. 1981, no. 1, pp. 012015, Jul. 2021

C.X. Díaz-Fuentes, A.P. Colmenares-Uribe and J.G. Peñaranda-Méndez, “Exploration of types of ventilated air chambers to improve thermal efficiency of bricks in fired clay,” J. Phys.: Conf. Series, vol. 1708, no. 1, pp. 012011, Dec. 2020

A.P. Colmenares, J. Sánchez-Molina y C.X. Díaz-Fuentes “Tratamiento de juntas de mortero en productos de arcilla cocida como estrategia para la regulación de transferencia energética en muros de la construcción” IV Congr. Int. de Tecnología, Ciencia y Educación para el Desarrollo Sostenible, Colombia, 2020

A.P. Colmenares, J. Sanchez-Molina and C.X. Díaz-Fuentes “Incidencia de pestañas y aleros en la transferencia y concentración de energía en el ladrillo hueco multiperforado y bloque H10 en arcilla cocida” Congr. Int. de Principios y Practicas de Diseño, Monterrey, Mexico, 2021

M.G. Cuitiño-Rosales, R. Rotondaro y A. Esteves, “Análisis comparativo de aspectos térmicos y resistencias mecánicas de los materiales y los elementos de la construcción con tierra,” Rev. Arq., vol. 22, no. 1, pp. 138-151, 2020

Published

2021-11-01

How to Cite

Díaz-Fuentes, C. X., Ríos-Cruz, S. A., & Cano-Macias, S. A. (2021). Comparative analysis of thermal and mechanical properties of straw and compressed earth blocks versus traditional masonry products. Mundo FESC Journal, 11(s4), 96–109. Retrieved from https://www.fesc.edu.co/Revistas/OJS/index.php/mundofesc/article/view/943

Issue

Section

Articulos

Most read articles by the same author(s)