Supplier selection with the PSI method
DOI:
https://doi.org/10.61799/2216-0388.1668Keywords:
Multicriteria, Decision, Evaluation.Abstract
The Preference Selection Index (PSI) method is a powerful tool in multi-criteria decision making (MCDM), which has gained popularity due to its ability to evaluate alternatives without the need to assign relative weights to the criteria. This makes it an ideal choice for complex processes such as supplier selection, where decision criteria are often multiple and diverse, such as cost, quality, reliability, delivery time, among others. In the context of this research, the PSI method will be applied to optimize supplier selection, offering an objective and simplified approach that reduces subjectivity in the process. The Preference Selection Index (PSI) method is a powerful tool in multi-criteria decision-making (MCDM) that has gained popularity for its ability to evaluate alternatives without the need to assign relative weights to the criteria. This makes it an ideal choice for complex processes like supplier selection, where decision criteria are often numerous and varied, including cost, quality, reliability, and sustainability. In a dynamic business environment, integrating multi-criteria approaches, such as the PSI, not only enhances the accuracy of supplier evaluations but also enables organizations to better align with their strategic needs. Moreover, considering sustainable factors has become increasingly important, highlighting the need for selection methods that balance operational efficiency with environmental impact. This study aims to validate the effectiveness of the PSI method compared to traditional approaches, ensuring that the selection process aligns with business objectives and contributes to more effective supply chain management. Companies seeking to optimize their operations and supply chain require tools that allow them to make informed decisions, as choosing the right supplier directly impacts operational performance. This study seeks to validate the effectiveness of the PSI method compared to other traditional approaches, ensuring that the selection process is consistent with business needs and objectives.
Downloads
References
[1] A. P. Bharathi, P. Ramesh, R. Manickam, K. Ramu, y V. Prasanth, «A Study on Preference Selection Index Multi-Criteria Decision Making Techniques», Data Anal. Artif. Intell., vol. 2, mar. 2022, doi: 10.46632/daai/2/1/4. DOI: https://doi.org/10.46632/daai/2/1/4
[2] M. K. Ghorabaee, E. K. Zavadskas, M. Amiri, y Z. Turskis, «Extended EDAS Method for Fuzzy Multi-criteria Decision-making: An Application to Supplier Selection», Int. J. Comput. Commun. CONTROL, vol. 11, n.o 3, Art. n.o 3, mar. 2016. DOI: https://doi.org/10.15837/ijccc.2016.3.2557
[3] «The Ganzfeld Psi Experiment: A Critical Appraisal - ProQuest». Accedido: 8 de octubre de 2024. [En línea]. Disponible en: https://www.proquest.com/openview/25ba027f7d2ac30955b32f502af1e3e8/1?pq-origsite=gscholarand1818062
[4] A. S. Carr y J. N. Pearson, «The impact of purchasing and supplier involvement on strategic purchasing and its impact on firm’s performance», Int. J. Oper. Prod. Manag., vol. 22, n.o 9, pp. 1032-1053, ene. 2002, doi: 10.1108/01443570210440528. DOI: https://doi.org/10.1108/01443570210440528
[5] R. Attri y S. Grover, «Application of preference selection index method for decision making over the design stage of production system life cycle», J. King Saud Univ. - Eng. Sci., vol. 27, n.o 2, pp. 207-216, jul. 2015, doi: 10.1016/j.jksues.2013.06.003. DOI: https://doi.org/10.1016/j.jksues.2013.06.003
[6] H. Zhao y S. Guo, «Selecting Green Supplier of Thermal Power Equipment by Using a Hybrid MCDM Method for Sustainability», Sustainability, vol. 6, n.o 1, Art. n.o 1, ene. 2014, doi: 10.3390/su6010217. DOI: https://doi.org/10.3390/su6010217
[7] K. Maniya y M. G. Bhatt, «A selection of material using a novel type decision-making method: Preference selection index method», Mater. Des., vol. 31, n.o 4, pp. 1785-1789, abr. 2010, doi: 10.1016/j.matdes.2009.11.020. DOI: https://doi.org/10.1016/j.matdes.2009.11.020
[8] S. Chamoli, «Preference selection index approach for optimization of V down perforated baffled roughened rectangular channel», Energy, vol. 93, pp. 1418-1425, dic. 2015, doi: 10.1016/j.energy.2015.09.125. DOI: https://doi.org/10.1016/j.energy.2015.09.125
[9] «Meta-Analysis of Psi Ganzfeld Research: A Response to Hyman - ProQuest». Accedido: 8 de octubre de 2024. [En línea]. Disponible en: https://www.proquest.com/openview/f35447f71f5397bb72592de18da88bba/1?pq-origsite=gscholar&cbl=1818062
[10] D. Notti, G. Herrera, S. Bianchini, C. Meisina, J. C. García-Davalillo, y F. Zucca, «A methodology for improving landslide PSI data analysis», Int. J. Remote Sens., vol. 35, n.o 6, pp. 2186-2214, mar. 2014, doi: 10.1080/01431161.2014.889864. DOI: https://doi.org/10.1080/01431161.2014.889864
[11] S. Sundari, Karmila, M. N. Fadli, D. Hartama, A. P. Windarto, y A. Wanto, «Decision Support System on Selection of Lecturer Research Grant Proposals using Preferences Selection Index», J. Phys. Conf. Ser., vol. 1255, n.o 1, p. 012006, ago. 2019, doi: 10.1088/1742-6596/1255/1/012006. DOI: https://doi.org/10.1088/1742-6596/1255/1/012006
[12] V. Tofani, F. Raspini, F. Catani, y N. Casagli, «Persistent Scatterer Interferometry (PSI) Technique for Landslide Characterization and Monitoring», Remote Sens., vol. 5, n.o 3, Art. n.o 3, mar. 2013, doi: 10.3390/rs5031045. DOI: https://doi.org/10.3390/rs5031045
[13] F. Cigna, S. Bianchini, y N. Casagli, «How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach», Landslides, vol. 10, n.o 3, pp. 267-283, jun. 2013, doi: 10.1007/s10346-012-0335-7. DOI: https://doi.org/10.1007/s10346-012-0335-7
[14] P. A. Cakranegara, Efendi, A. Wardhana, T. M. Simanjorang, y R. Sesario, «RECRUITMENT OF NEW EMPLOYEE USING SELECTION PROCESS FOR DETERMINING DECISIONS WITH THE PREFERENCE SELECTION INDEX METHOD», INFOKUM, vol. 10, n.o 4, Art. n.o 4, oct. 2022.
[15] W. Buskist, D. Cush, y R. J. DeGrandpre, «The life and times of PSI», J. Behav. Educ., vol. 1, n.o 2, pp. 215-234, jun. 1991, doi: 10.1007/BF00957005. DOI: https://doi.org/10.1007/BF00957005
[16] Y. Yu et al., «Polymeric PD-L1 blockade nanoparticles for cancer photothermal-immunotherapy», Biomaterials, vol. 280, p. 121312, ene. 2022, doi: 10.1016/j.biomaterials.2021.121312. DOI: https://doi.org/10.1016/j.biomaterials.2021.121312
[17] «ESLpred: SVM-based method for subcellular localization of eukaryotic proteins using dipeptide composition and PSI-BLAST | Nucleic Acids Research | Oxford Academic». Accedido: 8 de octubre de 2024. [En línea]. Disponible en: https://academic.oup.com/nar/article/32/suppl_2/W414/1040431 DOI: https://doi.org/10.1093/nar/gkh350
[18] R. Khorshidi y A. Hassani, «Comparative analysis between TOPSIS and PSI methods of materials selection to achieve a desirable combination of strength and workability in Al/SiC composite», Mater. Des. 1980-2015, vol. 52, pp. 999-1010, dic. 2013, doi: 10.1016/j.matdes.2013.06.011. DOI: https://doi.org/10.1016/j.matdes.2013.06.011
[19] «PT-TODIM Method for Probabilistic Linguistic MAGDM and Application to Industrial Control System Security Supplier Selection | International Journal of Fuzzy Systems». Accedido: 8 de octubre de 2024. [En línea]. Disponible en: https://link.springer.com/article/10.1007/s40815-021-01125-7
[20] «Soft computing-based preference selection index method for human resource management - IOS Press». Accedido: 8 de octubre de 2024. [En línea]. Disponible en: https://content.iospress.com/articles/journal-of-intelligent-and-fuzzy-systems/ifs748
[21] «Comparison of the Revised Air Quality Index with the PSI and AQI indices - ScienceDirect». Accedido: 8 de octubre de 2024. [En línea]. Disponible en: https://www.sciencedirect.com/science/article/abs/pii/S0048969707004901
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Mundo FESC Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.