MPPT of PV Panel with Boost converter in Matlab/Simulink

Authors

  • Jhon Edward Lizarazo Parada Servicio Nacional de Aprendizaje SENA
  • Aldo Pardo García Universidad de Pamplona
  • Luz Karime López Galeano Universidad de Pamplona
  • Pablo Andrés Gómez Monsalve Universidad de Pamplona

DOI:

https://doi.org/10.61799/2216-0388.1962

Keywords:

Application of power electronics, Control of renewable energy resources, Control system design, Intelligent control of power systems, Maximum Power Point Tracking, Modeling and simulation of power systems, Power and Energy Systems.

Abstract

Renewable energies are classified according to exploitable resources into hydroelectric, wind, solar, hydrogen, biomass, geothermal, and oceanic. The application of power electronics in conversion processes is essential to increase energy transformation efficiency. Therefore, maximum power transfer is clearly affected by the type of converter used. In solar photovoltaic systems, there are different architectures studied for the analysis of maximum power transfer in converters according to the literature reviewed. In this research, a step-up converter is implemented as a power interface between the 340W Amerisolar polycrystalline photovoltaic panel generation system and a 100Ω resistive load applied with a programmable constant resistance load as an energy conversion plant or process to track the maximum power point by applying algorithms with a Raspberry Pi 5 control device. The methodology links three stages. The first was the characterisation of the photovoltaic solar panel system, the second was the tracking of the maximum power point using the perturbation and observation (P&O) algorithm simulated with MATLAB/Simulink to obtain the PV and VI performance curves. In the third stage, a system was implemented that allows the application of maximum power point tracking (MPPT) algorithms with a data acquisition system for irradiance, temperature, current, and voltage for the necessary feedback. Energy conversion requires high switching frequencies and slower algorithm updates according to changes in irradiance in Norte de Santander, to this end, it is feasible to use embedded systems together with high-speed MOSFETs, which allow for increased conversion efficiency and maximum power point tracking (MPPT).

Downloads

Download data is not yet available.

References

[1] F. A. Lara V., M. Padilla Ortiz y C. Vargas Salgado,“Comparative experimental analysis of the annual energy production of a 72kWn photovoltaic solar power plant installed on a roof for self-consumption in the city of Monteria using PVsyst, PVGIS and SAM,” Revista Colombiana de Tecnologías de Avanzada, vol. 1, n° 43, págs. 43-2024, 2024. doi: https://doi.org/10.24054/rcta.v1i43.2807 . url: https://ojs.unipamplona.edu.co/index.php/rcta/article/view/2807/6478 .

[2] M. H. Rashid, “Electronica de Potencia”, 4 Ed. USA, 2015, vol. 1, isbn: 978-607-32-3328-6.

[3] C. Pavithra, S. Vidhyareni, M. Vijayadharshini, S. K. Akshaya y N. Varsha, “Comparison of Solar P&O and FLC-based MPPT Controllers & Analysis under Dynamic Conditions,”, EAI Endorsed Transactions on Energy Web, vol. 11, págs. 1-6, 2024, issn: 2032944X. https://doi.org/10.4108/ew.4988 , url: https://publications.eai.eu/index.php/ew/article/view/4988 DOI: https://doi.org/10.4108/ew.4988

[4] B. Yang, R. Xie y Z. Guo, “Maximum Power Point Tracking Technology for PV Systems: Current Status and Perspectives,”, Energy Engineering: Journal of the Association of Energy Engineering, vol. 121, n.o 8, págs. 2009-2022, 2024, issn: 15460118. doi: https://doi.org/10.32604/ee.2024.049423. url: https://www.techscience.com/energy/v121n8/57341

[5] E. J. Barbosa, M. C. Cavalcanti, G. M. S. Azevedo, R. C. Neto, E. A. O. Barbosa y F. Bradaschia, “Hybrid GMPPT Technique for Photovoltaic Series Based on Fractional Characteristic Curve,”, IEEE Journal of Photovoltaics, vol. 14, n.o 1, págs. 170-177, 2024. doi: 10.1109/JPHOTOV.2023.3323774, https://ieeexplore.ieee.org/document/10288588 . DOI: https://doi.org/10.1109/JPHOTOV.2023.3323774

[6] S. Senthilkumar, V. Mohan, S. Mangaiyarkarasi y M. Karthikeyan, “Analysis of Single-Diode PV Model and Optimized MPPT Model for Different Environmental Conditions”, International Transactions on Electrical Energy Systems-2015-Tripathi, 2022. doi: https://doi.org/10.1155/2022/4980843, url: https://onlinelibrary.wiley.com/doi/10.1155/2022/4980843 . DOI: https://doi.org/10.1155/2022/4980843

[7] Y. García, F. García y J. A. Martín, “Mathematical model for the determination of volt-ampere characteristics in solar photocells,” Revista Colombiana De Tecnologias De Avanzada (Rcta), 2022 doi: 10.24054/rcta.v2i40.2358 . DOI: https://doi.org/10.24054/rcta.v2i40.2358

[8] N. Priyadarshi, P. Sanjeevikumar, M. S. Bhaskar, F. Azam y S. M. Muyeen, “An improved standalone photovoltaic system with hybrid dual integral sliding mode and model predictive control for MPPT,” IET Renewable Power Generation, 2021. doi: https://doi.org/10.1049/rpg2.12665. url: https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/rpg2.12665 .

[9] H. Abidi y L. Sidhom, “Photovoltaic MPPT Techniques,” 2023, https://doi.org/10.3390/en16083509 . DOI: https://doi.org/10.3390/en16083509

[10] M. Abouelela, “Power electronics for practical implementation of PV MPPT.” 2020, págs. 65-105, isbn: 9783030055783. doi: 10.1007/978-3-030-05578-3_3 . url: https://link.springer.com/book/10.1007/978-3-030-05578-3 .

[11] N. Hernandez Diaz, A. Pardo Garcia, E. N. Sanchez Camperos y C. J. Vega, “Implementación De Un Módulo Para El Control Y Gestión Del Almacenamiento De Energía En Una Microrred Eléctrica,” Revista Colombiana De Tecnologias De Avanzada (Rcta), vol. 1, n°37, págs. 91-98, 2023, issn: 1692-7257. doi: https://doi.org/10.24054/rcta.v1i37.1258 . DOI: https://doi.org/10.24054/rcta.v1i37.1258

[12] R. Manual, “Switch Mode Power Supply Reference Manual,” On Semiconductor, vol. Rev4, pág. 73, 2014. URL: https://www.onsemi.com/pub/collateral/smpsrm-d.pdf

[13] M. Abdel-Salam, M. T. EL-Mohandes y M. Goda, “History of maximum power point tracking,” Green Energy and Technology, págs. 1-29, 2020, issn:18653537. doi:10.1007/978-3-030-05578-3_1. url: https://link.springer.com/book/10.1007/978-3-030-05578-3 . DOI: https://doi.org/10.1007/978-3-030-05578-3_1

[14] E. Muñoz-Palomeque, J. E. Sierra-García y M. Santos, “Técnicas de control inteligente para el seguimiento del punto de máxima potencia en turbinas eólicas,” Revista Iberoamericana de Automática e Informática industrial, vol. 21, n°3, págs. 193-204, 2024, issn: 1697-7912. doi: https://doi.org/10.4995/riai.2024.21097 , url: https://polipapers.upv.es/index.php/RIAI/article/view/21097 . DOI: https://doi.org/10.4995/riai.2024.21097

[15] A. A. Alzubaidi, L. A. Khaliq, H. S. Hamad, W. K. Al-Azzawi, M. S. Jabbar y T. A. Shihab, “MPPT implementation and simulation using developed P&O algorithm for photovoltaic system concerning efficiency,” Bulletin of Electrical Engineering and Informatics, vol. 11, n°5, págs. 2460-2470, 2022, issn: 23029285. doi: https://doi.org/10.11591/eei.v11i5.3949, url: https://beei.org/index.php/EEI/article/view/3949 . DOI: https://doi.org/10.11591/eei.v11i5.3949

[16] A. M. Eltamaly y H. M. “Farh, PV characteristics, performance and modelling.” 2020, págs. 31-63, isbn:9783030055783. doi:10.1007/978-3-030-05578- 3_2. url: https://link.springer.com/book/10.1007/978-3-030-05578-3.

[17] S. Ngo, C. S. Chiu, T. D. Ngo y C. T. Nguyen, “A novel hybrid method based MPP tracking design using boost converter for solar power systems,” International Journal of Power Electronics and Drive Systems, vol. 15, n°1, págs. 506-517, 2024, issn:20888694. doi: http://doi.org/10.11591/ijpeds.v15.i1.pp506-517, url: https://ijpeds.iaescore.com/index.php/IJPEDS/article/view/22842 . DOI: https://doi.org/10.11591/ijpeds.v15.i1.pp506-517

[18] O. Abdalla, H. Rezk y E. M. Ahmed, “Wind driven optimization algorithm based global MPPT for PV system under non-uniform solar irradiance,” Solar Energy, vol. 180,August 2018, págs. 429-444, 2019, issn: 0038092X. doi: https://doi.org/10.1016/j.solener.2019.01.056 , url: https://www.sciencedirect.com/science/article/pii/S0038092X19300684?via%3Dihub DOI: https://doi.org/10.1016/j.solener.2019.01.056

[19] H. M. Farh y A. M. Eltamaly, “Maximum power extraction from the photovoltaic system under partial shading conditions,” Green Energy and Technology, págs. 107-129, 2020, issn: 18653537. doi: https://doi.org/10.1007/978-3-030-05578-3_4 url: https://link.springer.com/book/10.1007/978-3-030-05578-3. DOI: https://doi.org/10.1007/978-3-030-05578-3_4

[20] D. M. Atia, “Global maximum power point trackingbased computational intelligence techniques.” 2020, págs. 131-163, isbn: 9783030055783. doi: 10.1007/978-3-030-55783_5. url: https://link.springer.com/book/10.1007/978-3-030-05578-3.

[21] M. Abdel-Salam, M. T. EL-Mohandes y M. Goda, “On the improvements of perturb-and-observe-based MPPT in PV systems.” 2020, págs. 165-198, isbn:9783030055783. doi:10.1007/978- 3- 030- 05578- 3_6. url: https://link.springer.com/book/10.1007/978-3-030-05578-3.

[22] S. Roy Chowdhury y H. Saha, “Maximum power point tracking of partially shaded solar photovoltaic arrays,” Solar Energy Materials and Solar Cells, vol. 94, n° 9, págs. 1441-1447, 2010, issn: 09270248. doi: 10.1016/j.solmat.2010.04.011. url: http://dx.doi.org/10.1016/j.solmat.2010.04.011 . DOI: https://doi.org/10.1016/j.solmat.2010.04.011

[23] W. H. Tan y J. Mohamad-Saleh, “Critical Review on Interrelationship of Electro-Devices in PV Solar Systems with Their Evolution and Future Prospects for MPPT Applications,” Energies, vol. 16, n° 2, 2023, issn: 19961073. doi: https://doi.org/10.3390/en16020850. url: https://www.mdpi.com/1996-1073/16/2/850 DOI: https://doi.org/10.3390/en16020850

[24] P. Mittal, T. Goel y P. Gupta, “Evolution of MPPT algorithms in solar arrays,” Materials Today: Proceedings, vol. 37, n° 2, págs. 3154-3158, 2020, issn:22147853. doi: https://doi.org/10.1016/j.matpr.2020.09.045 url: https://www.sciencedirect.com/science/article/pii/S221478532036733X?via%3Dihub . DOI: https://doi.org/10.1016/j.matpr.2020.09.045

[25] S. Motahhir, A. El Hammoumi y A. El Ghzizal, “The most used MPPT algorithms: Review and the suitable low-cost embedded board for each algorithm,” Journal of Cleaner Production, vol. 246, pág. 118 983, 2020,issn:09596526.doi: https://doi.org/10.1016/j.jclepro.2019.118983 url: https://www.sciencedirect.com/science/article/pii/S0959652619338533?via%3Dihub . DOI: https://doi.org/10.1016/j.jclepro.2019.118983

[26] C. Restrepo, C. Gonzalez-Castaño, J. Muñoz, A. Chub, E. Vidal-Idiarte y R. Giral, “An MPPT Algorithm for PV Systems Based on a Simplified Photo-Diode Model” IEEE Xplore Access, doi: 10.1109/ACCESS.2021.3061340 ,vol. 9,2021, issn: 2169-3536, doi: 10.1109/ACCESS.2021.3061340 url: https://ieeexplore.ieee.org/document/9360748 . DOI: https://doi.org/10.1109/ACCESS.2021.3061340

[27] A. Zouhri, “Advanced perturb and observe algorithm for maximum power point tracking in photovoltaic systems with adaptive step size”, Journal ofAutomation, Mobile Robotics and Intelligent Systems, vol 18 N° 3, 2024 doi: 10.14313/JAMRIS/3‐2024/22 url: https://www.jamris.org/index.php/JAMRIS/article/view/935.

[28]. Nguyen. H. P, Nguyen, T. T, Le. M. P, Tran T. N, “Experimental platforms consisting of software-in-the-loop, hardware-in-the-loop and power-hardware-in-the-loop for developing MPPT charge controller for photovoltaic system”, Solar Energy, vol 298, Septiembre 2025, doi: 10.1016/j.solener.2025.113666 url: https://www.sciencedirect.com/science/article/pii/S0038092X25004293?via%3Dihub . DOI: https://doi.org/10.1016/j.solener.2025.113666

Downloads

Published

2025-05-01

Issue

Section

Artículo Originales

How to Cite

Lizarazo Parada, J. E., Pardo García, A., López Galeano, L. K., & Gómez Monsalve, P. A. (2025). MPPT of PV Panel with Boost converter in Matlab/Simulink. Mundo FESC Journal, 15(32), 133-151. https://doi.org/10.61799/2216-0388.1962