Procesos sensitivos y perceptivos a partir de sistemas hápticos como eje de innovación en aplicaciones de realidad virtual para entrenamiento laboral.
DOI:
https://doi.org/10.61799/2216-0388.1834Palabras clave:
Entrenamiento laboral, Ergonomía, Realidad Virtual, Tecnología Háptica, Trabajo DecenteResumen
En el ámbito del entrenamiento laboral se ha implementado el uso de dispositivos hápticos y aplicaciones de realidad virtual (VR) enfocados a mitigar accidentes, los cuales replican escenarios donde subyacen situaciones que remiten alto riesgo para la seguridad, condiciones extremas de trabajo o manejo de sustancias peligrosas. Estos contextos se alinean con las directrices ofrecidas por la Organización Internacional del Trabajo (OIT) respecto al diseño y gestión de sistemas laborales más seguros y eficientes. El estudio tuvo como objetivo describir como la implementación de sistemas hápticos en aplicaciones VR para entrenamiento laboral han constituido un importante eje de innovación en este campo, mediante la revisión descriptiva de literatura científica relacionada. Se encontraron 4075 documentos, de los cuales se seleccionaron 47 afines al objeto de estudio, éstos se clasificaron en tres categorías: a. Desarrollo y evaluación de tecnología háptica aplicada a experiencias VR; b. Verificación de literatura enfocada a tecnologías hápticas y VR; c. Estudios de caso de desarrollo de aplicaciones VR para entrenamiento laboral. En conclusión, la tecnología háptica portable presenta un amplio potencial en la prevención, evaluación y capacitación preventiva de lesiones en entornos laborales. Los próximos pasos se pueden enfocar en el desarrollo de nuevos materiales y dispositivos de tecnología háptica portable que democratice su uso en organizaciones; el desarrollo de aplicaciones que integren componentes de realidades virtual, aumentada o mixta con dispositivos hápticos que permitan atender las recomendaciones de la OIT para el diseño y gestión sistemas laborales más seguros y eficientes.
Descargas
Referencias
[1] T.-H. Yang, J. R. Kim, H. Jin, H. Gil, J.-H. Koo, H. J. Kim, "Recent advances and opportunities of active materials for haptic technologies in virtual and augmented reality," Adv. Funct. Mater., vol. 31, no. 20, 2008831, 2021, doi: 10.1002/adfm.202008831. DOI: https://doi.org/10.1002/adfm.202008831
[2] D. Escobar-Castillejos, J. Noguez, R. Cárdenas-Ovando, L. Neri, A. González-Nucamendi, and V. Robledo-Rella, “Using game engines for visuo-haptic learning simulations,” Appl. Sci., vol. 10, no. 13, p. 4553, 2020, doi: 10.3390/app10134553. DOI: https://doi.org/10.3390/app10134553
[3] Tesla Suit, User Guide: Version 4.8 XR, 2023. Accessed: Jun. 19, 2025. [Online]. Available: https://developer.teslasuit.io/wp-content/uploads/UserGuide_Version-4.8-XR_March-2023.pdf
[4] M. Afzal, M. T. Shafiq, and H. Al Jassmi, “Improving construction safety with virtual-design construction technologies—A review,” J. Inf. Technol. Constr., vol. 26, pp. 1–15, 2021, doi:10.36680/j.itcon.2021.018. DOI: https://doi.org/10.36680/j.itcon.2021.018
[5] D. Scorgie et al., “Virtual reality for safety training: A systematic literature review and meta-analysis,” Saf. Sci., vol. 171, p. 106372, 2024, doi: 10.1016/j.ssci.2023.106372. DOI: https://doi.org/10.1016/j.ssci.2023.106372
[6] International Labour Organization (ILO) and International Ergonomics Association (IEA), Principles and Guidelines for Human Factors/Ergonomics (HFE) Design and Management of Work Systems, ILO, 2021. Accessed: Jun. 19, 2025. [Online]. Available:
[7] D. L. Gutiérrez, “La exploración de tecnología de VR para mejorar la educación y la capacitación,” Biníriame, 2022. [En línea]. Disponible en: https://www.researchgate.net/publication/374792889_La_Exploracion_de_Tecnologia_de_Re DOI: https://doi.org/10.20983/biniriame.2022.2.3
alidad_Virtual_para_Mejorar_la_Educacion_y_la_Capacitacion
[8] V. Cárdenas Bocanegra, “Desarrollo de un entorno virtual de entrenamiento con interacción háptica para la prevención y gestión del riesgo laboral. Bogotá, Colombia: Universidad Nacional de Colombia”, 2022. [En línea]. Disponible en:
https://repositorio.unal.edu.co/handle/unal/82282
[9] J. E. Naranjo, D. G. Sánchez, A. Robalino-López, P. Robalino-López, A. Alarcon-Ortiz, and M. V. Garcia, “A Scoping Review on Virtual Reality-Based Industrial Training,” Applied Sciences, vol. 10, no. 22, p. 8224, Nov. 2020, doi: 10.3390/app10228224. DOI: https://doi.org/10.3390/app10228224
[10] J. Kačerová, J. Kubr, P. Hořejší, and J. Kleinová, “Ergonomic design of a workplace using virtual reality and a motion capture suit,” Appl. Sci., vol. 12, no. 4, p. 2150, 2022, doi:
10.3390/app12042150. DOI: https://doi.org/10.3390/app12042150
[11] J. A. León-Duarte, G. Martínez-Cadena, and J. Olea-Miranda, “Sistema automatizado de análisis de movimiento para la detección del factor de riesgo ergonómico en la industria de la construcción,” Inf. Tecnol., vol. 32, no. 6, pp. 213–220, 2021, doi: 10.4067/S0718- DOI: https://doi.org/10.4067/S0718-07642021000600213
07642021000600213.
[12] T. Caporaso, S. Grazioso, and G. Di Gironimo, “Development of an integrated virtual reality system with wearable sensors for ergonomic evaluation of human–robot cooperative workplaces,” Sensors, vol. 22, no. 6, p. 2413, 2022, doi: 10.3390/s22062413. DOI: https://doi.org/10.3390/s22062413
[13] C. A. Peña-Cortés, A. L. Vargas-Granados, and A. Pardo-García, “Análisis del nivel de compromiso en la programación de dispositivos hápticos por medio de una interfaz cerebro computador,” Rev. Investig. Desarro. Innov., vol. 12, no. 1, pp. 137–148, Feb. 2022, doi:
10.19053/20278306.v12.n1.2022.14214. DOI: https://doi.org/10.19053/20278306.v12.n1.2022.14214
[14] E. Galofaro, E. D’Antonio, N. Lotti, and L. Masia, “Rendering immersive haptic force feedback via neuromuscular electrical stimulation,” Sensors, vol. 22, no. 14, p. 5069, 2022, doi:10.3390/s22145069. DOI: https://doi.org/10.3390/s22145069
[15] A. R. See, J. A. G. Choco, and K. Chandramohan, “Touch, texture and haptic feedback: A review on how we feel the world around us,” Appl. Sci., vol. 12, no. 9, p. 4686, 2022. [Online]. Available: https://doi.org/10.3390/app12094686 DOI: https://doi.org/10.3390/app12094686
[16] L. Moreno Rodríguez, Desarrollo de una herramienta de software para la integración de sensores hápticos a interfaces de realidad aumentada orientadas al entrenamiento industrial. Universidad Nacional de Colombia, 2021. [Online]. Available:
https://repositorio.unal.edu.co/handle/unal/79457
[17] C. Wee, K. M. Yap, and L. Ning, “Haptic interfaces for virtual reality: Challenges and research directions,” IEEE Access, pp. 1–1, 2021, doi: 10.1109/ACCESS.2021.3103598. DOI: https://doi.org/10.1109/ACCESS.2021.3103598
[18] C. Pacchierotti, “Cutaneous haptic feedback for robotics and virtual reality,” Robotics [cs.RO], Université de Rennes 1, Rennes, France, 2022. [Online]. Available: https://api.semanticscholar.org/CorpusID:247682039
[19] G. Giri, Y. Maddahi, and K. Zareinia, “An application-based review of haptics technology,” Robotics, vol. 10, p. 29, 2021, doi: 10.3390/ROBOTICS10010029. DOI: https://doi.org/10.3390/robotics10010029
[20] R. Toyoda, F. Russo-Abegão, and J. Glassey, “VR-based health and safety training in various high-risk engineering industries: a literature review,” Int. J. Educ. Technol. High. Educ., vol. 19, no. 42, 2022. [Online]. Available: https://doi.org/10.1186/s41239-022-00349-3 DOI: https://doi.org/10.1186/s41239-022-00349-3
[21] A. Adilkhanov, M. Rubagotti, and Z. Kappassov, “Haptic devices: Wearability-based taxonomy and literature review,” IEEE Access, 2022, doi: 10.1109/ACCESS.2022.3202986. DOI: https://doi.org/10.1109/ACCESS.2022.3202986
[22] J. P. F. Assumpção and A. R. M. Cuperschmid, “Associação de realidade aumentada eaeronaves não tripuladas: pesquisas emergentes e oportunidades em AECO,” Rev. Cienc. Tecnol., no. 35, pp. 21–30, 2021. [Online]. Available: DOI: https://doi.org/10.36995/j.recyt.2021.35.003
https://www.scielo.org.ar/scielo.php?script=sci_arttext&pid=S1851-75872021000100021
[23] D. M. Eagleman and M. V. Perrotta, “The future of sensory substitution, addition, and expansion via haptic devices,” Front. Hum. Neurosci., vol. 16, 2023, doi:
10.3389/fnhum.2022.1055546. DOI: https://doi.org/10.3389/fnhum.2022.1055546
[24] H. M. Tusher, S. Mallam, and S. Nazir, “A systematic review of virtual reality features for skill training,” Tech. Knowl. Learn., vol. 29, pp. 843–878, 2024. [Online]. Available: https://doi.org/10.1007/s10758-023-09713-2 DOI: https://doi.org/10.1007/s10758-023-09713-2
[25] F. Sanfilippo, T. Blazauskas, G. Salvietti, I. Ramos, S. Vert, J. Radianti, T. Majrzak & D. Oliveira, “A perspective review on integrating VR/AR with haptics into STEM education for multi-sensory learning,” Robotics, vol. 11, no. 2, p. 41, 2022, doi: 10.3390/robotics11020041. DOI: https://doi.org/10.3390/robotics11020041
[26] C. M. Lind, F. Abtahi, and M. Forsman, “Wearable motion capture devices for the prevention of work-related musculoskeletal disorders in ergonomics: An overview of current applications, challenges, and future opportunities,” Sensors, vol. 23, no. 9, p. 4259, 2023, doi:10.3390/s23094259. DOI: https://doi.org/10.3390/s23094259
[27] A. D. Souchet et al., “A narrative review of immersive virtual reality’s ergonomics and risks at the workplace: cybersickness, visual fatigue, muscular fatigue, acute stress, and mental overload,” Virtual Reality, vol. 27, pp. 19–50, 2023, doi: 10.1007/s10055-022-00672-0. DOI: https://doi.org/10.1007/s10055-022-00672-0
[28] S. K. Renganayagalu, S. C. Mallam, and S. Nazir, “Effectiveness of VR head mounted displays in professional training: A systematic review,” Tech Know Learn, vol. 26, pp.
999–1041, 2021, doi: 10.1007/s10758-020-09489-9. DOI: https://doi.org/10.1007/s10758-020-09489-9
[29] V. Cárdenas Bocanegra y F. A. Olarte Dussan, «Entrenamiento en gestión del riesgo en realidad virtual: Diseño e implementación de un entorno de entrenamiento para la prevención y gestión del riesgo laboral basado en realidad virtual e interacción háptica», revEDUTECH, vol.9, n.º 1, pp. 31–44, sep. 2022, doi: https://doi.org/10.37467/gkarevedutech.v9.3353 DOI: https://doi.org/10.37467/gkarevedutech.v9.3353
[30] E. Castilla-Molina, E. E. Castilla-Molina, M. Ferrer-Añel, and D. Ovallos-Gazabon, “Uso de la VR inmersiva para reducir el riesgo psicosocial en el contexto laboral,” Inf. Tecnol., vol. 33, no. 6, pp. 1–10, 2022, doi: 10.4067/S0718-07642022000600001. DOI: https://doi.org/10.4067/S0718-07642022000600001
[31] C. G. Covarrubias Madera, J. A. Hernández Mejía, and J. Ontiveros Paredes, "Análisis costo y beneficio de los software de realidad virtual para la capacitación laboral de alto riesgo,"
ReDTIS, vol. 5, no. 1, Dec. 2021. [Online]. Disponible en: https://www.redtis.webaccess.mx/index.php/Redtis/article/view/78.
[32] S. I. Macias-Velasquez and H. I. M. Castillo, "Evaluación de la carga mental de trabajo y experiencia del usuario en sistemas de entrenamiento virtual de ensambles con habilitación háptica," 2022. [En línea]. Disponible en:
https://somim.org.mx/memorias/memorias2022/articulos/A2_36.pdf.
[33] C.-H. Chu, J.-K. Pan, and Y.-W. Chen, “Ergonomic workplace design based on real-time integration between virtual and augmented realities,” Rob. Comput. Integr. Manuf., vol. 92, Art. no. 102859, 2025. [Online]. Available: https://doi.org/10.1016/j.rcim.2024.102859 DOI: https://doi.org/10.1016/j.rcim.2024.102859
[34] I. Fernández, and A. Bolaños, “La conexión del Metaverso con el mundo real: experimentación en los eventos a través de los sentidos,” Signum (Alicante): Revista Internacional de Investigación en Eventos, Protocolo y Relaciones Institucionales, vol. 3, no. 1,
pp. 15–29, 2024. [Online]. Available: https://dialnet.unirioja.es/servlet/articulo?codigo=9518359
[35] C. C. García Rodríguez, O. L. Mosquera Dussán, D. Guzmán Pérez, J. E. Zamudio Palacios, and J. A. García Torres, “Análisis de necesidades e implementación de tecnología de VR para entrenamiento y educación militar en Colombia,” Rev. Logos Cienc. Tecnol., vol. 13, no. 1, pp. 8–18, 2021, doi: 10.22335/rlct.v13i1.1271. DOI: https://doi.org/10.22335/rlct.v13i1.1271
[36] J. Hepp et al., “Exploring Teslasuit’s potential in detecting sequential slip-induced kinematic changes among healthy young adults,” Sensors, vol. 23, p. 6258, 2023, doi: 10.3390/s23146258. DOI: https://doi.org/10.3390/s23146258
[37] M. S. Islam et al., “Multimodal feedback to improve performance of order picker truck drivers using a virtual reality simulator,” in Proc. Hum. Factors Ergonom. Soc. Annu. Meet., 2024, doi: 10.1177/10711813241272128. DOI: https://doi.org/10.1177/10711813241272128
[38] M. A. Kuhail, J. Berengueres, F. Taher, M. Alkuwaiti, and S. Z. Khan, “Haptic systems: Trends and lessons learned for haptics in spacesuits,” Electronics, vol. 12, p. 1888, 2023, doi: 10.3390/electronics12081888. DOI: https://doi.org/10.3390/electronics12081888
[39] C. M. Lind, J. A. Diaz-Olivares, K. Lindecrantz, and J. Eklund, “A wearable sensor system for physical ergonomics interventions using haptic feedback,” Sensors, vol. 20, no. 21, p. 6010, 2020, doi: 10.3390/s20216010. DOI: https://doi.org/10.3390/s20216010
[40] W. V. Culque Toapanta, L. A. Llerena Ocaña, and F. A. Viscaino Naranjo, “Simulador electrónico con feedback háptico para entrenamiento pedagógico,” Conrado, vol. 18, no. 85, pp. 198–202, 2022. [Online]. Available: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1990-86442022000200198
[41] S. Baek, Y.-H. Gil, and Y. Kim, “VR-based job training system using tangible interactions,” Sensors, vol. 21, no. 20, p. 6794, 2021, doi: 10.3390/s21206794. DOI: https://doi.org/10.3390/s21206794
[42] S. Damme, J. Tack, G. Wallendael, F. Turck, and M. Vega, “Are we ready for haptic interactivity in VR? An experimental comparison of different interaction methods in virtual reality training,” in Proc. 15th Int. Conf. Qual. Multimedia Exp. (QoMEX), 2023, pp. 294–299,
doi: 10.1109/QoMEX58391.2023.10178453. DOI: https://doi.org/10.1109/QoMEX58391.2023.10178453
[43] D. Escobar Valencia, J. M. Vicente Samper, J. M. Sabater Navarro, and O. A. Vivas Albán, “Resolución de localización espacial háptica mediante estimulación eléctrica en la yema de los dedos,” Ingeniare. Rev. Chil. Ing., vol. 29, no. 1, pp. 18–26, 2021, doi: 10.4067/S0718- DOI: https://doi.org/10.4067/S0718-33052021000100018
33052021000100018.
[44] V. Holuša, M. Vaněk, F. Beneš, J. Švub, and P. Staša, “Virtual reality as a tool for sustainable training and education of employees in industrial enterprises,” Sustainability, vol. 15, no. 17, p. 12886, 2023, doi: 10.3390/su151712886. DOI: https://doi.org/10.3390/su151712886
[45] D. Calandra, F. De Lorenzis, A. Cannavò, et al., "Immersive virtual reality and passive haptic interfaces to improve procedural learning in a formal training course for first responders," Virtual Reality, vol. 27, pp. 985–1012, 2023. [En línea]. Disponible en:
https://doi.org/10.1007/s10055-022-00704-9. DOI: https://doi.org/10.1007/s10055-022-00704-9
[46] M. Morcos et al., “Full-body haptic cueing algorithms for augmented pilot perception in degraded/denied visual environments,” 2023, doi: 10.4050/F-0079-2023-18072. DOI: https://doi.org/10.4050/F-0079-2023-18072
[47] M. Ron, E. Hernández Runque, and J. S. Hernández Romero, “Evaluación ergonómica de actividades en una unidad de procesamiento logístico,” Rev. Cubana Salud Trab., vol. 24, no. 2, 2023. [Online]. Available: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1991-93952023000200004
[48] J. P. Vox et al., “An evaluation of motion trackers with virtual reality sensor technology in comparison to a marker-based motion capture system based on joint angles for ergonomic risk assessment,” Sensors, vol. 21, no. 9, p. 3145, 2021, doi: 10.3390/s21093145. DOI: https://doi.org/10.3390/s21093145
[49] N. Weber, “Full body haptic bodysuit—An instrument to measure the range and speed of motion in patients with axial spondyloarthritis (axSpA)—Preliminary results,” Ann. Rheum. Dis., vol. 81, Suppl. 1, p. 1866, 2022. [Online]. Available: DOI: https://doi.org/10.1136/annrheumdis-2022-eular.3069
https://ard.bmj.com/content/81/Suppl_1/1866.2 DOI: https://doi.org/10.1136/bmj.2.290.81
[50] V. Weistroffer, F. Keith, A. Bisiaux, C. Andriot, and A. Lasnier, “Using physics-based digital twins and extended reality for the safety and ergonomics evaluation of cobotic workstations,” Front. Virtual Reality, vol. 3, 2022. [Online]. Available: https://www.frontiersin.org/journals/virtual-reality/articles/10.3389/frvir.2022.781830 DOI: https://doi.org/10.3389/frvir.2022.781830
[51] A. G. da Silva, M. V. Mendes Gomes, and I. Winkler, “Virtual reality and digital human modeling for ergonomic assessment in industrial product development: A patent and literature review,” Appl. Sci., vol. 12, no. 3, p. 1084, 2022, doi: 10.3390/app12031084. DOI: https://doi.org/10.3390/app12031084
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Mundo FESC

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.