Review of Communication Protocols Applied to Coal Mining: Limitations, Trends, and Innovations for Critical Environments
DOI:
https://doi.org/10.61799/2216-0388.1799Keywords:
Industrial communication, Technological innovation, Underground mining, Coal mines, Communication protocols, Technological trendsAbstract
Currently, industrial communication systems play a fundamental role in the efficiency and safety of mining processes, especially in underground environments such as coal mines, where conditions are complex. The objective of this article is to analyze the main limitations, trends, and innovations in industrial communication protocols applied to coal mining. The methodology consisted of a systematic literature review of articles published between 2019 and 2025, mainly obtained from the Scopus database. The articles were qualitatively analyzed to identify trends, emerging technologies, common challenges, and proposed solutions applied in the mining context. The results show a trend toward the use of systems such as Zigbee, as well as robust Wi-Fi networks. On the other hand, new technologies such as 5G networks and the use of the ESP32 microcontroller with its ESP-NOW protocol are being tested as cost-effective alternatives. Likewise, the trend towards solutions based on the Internet of Things (IoT) and malla networks adapted to underground tunnels is highlighted. It is concluded that the evolution of industrial communication protocols represents an opportunity to strengthen safety, optimize mining operations, and advance towards safer and smarter mining
Downloads
References
[1] Z. Lian, X. Yuan, F. Gao, Y. Liao, Y. Guo, y R. Zhao, "Networked intelligent sensing method for powered support," Meitan Xuebao/Journal of the China Coal Society, vol. 45, no. 6, pp. 2078-2089, Jun. 2020, doi: 10.13225/j.cnki.jccs.ZN20.0361.
[2] X. Jia, F. Shi, Y. Guan, S. Tang, y M. Tong, "Zigbee-based wireless gas monitoring sensor alarm system in coal mine," IOP Conference Series: Earth and Environmental Science, vol. 446, no. 2, Art. no. 022012, Mar. 2020, doi: 10.1088/1755-1315/446/2/022012. DOI: https://doi.org/10.1088/1755-1315/446/2/022012
[3] P. N.R., C. N., H. L.N., K. K.J., y P. K.V., "IOT based Worker Safety Monitoring and Alerting System in Coal Mines," 14th International Conference on Advances in Computing, Control, and Telecommunication Technologies (ACT 2023), Hyderabad, India, Jun. 2023, pp. 1826-1831.
[4] H. Chen y P. Li, "Intelligent Positioning Boots for Miners' Fall Monitoring Based on ZigBee Communication Protocol and ADXL345 Acceleration Sensor," 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC 2022), Dalian, China, Apr. 2022, pp. 304-307, doi: 10.1109/IPEC54454.2022.9777577. DOI: https://doi.org/10.1109/IPEC54454.2022.9777577
[5] A. Wang, J. Gao, L. Meng, W. Wu, Y. Qin, J. Pei, y L. Cui, "Design of Intelligent Coalmine Tunnel Collapse Warning System Based on Can Bus and Zigbee Technology," 7th International Conference on Computing and Artificial Intelligence (ICCAI 2021), Virtual, Apr. 2021, pp. 493-498, doi: 10.1145/3467707.3467784. DOI: https://doi.org/10.1145/3467707.3467784
[6] J. Li, M. Li, F. Yan, y D. Miao, "Key technologies of data monitoring for coal machinery equipment in the intelligent IoT environment," 10th IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems (CYBER 2020), Xi'an, China, Oct. 2020, pp. 364-369, doi: 10.1109/CYBER50695.2020.9278951. DOI: https://doi.org/10.1109/CYBER50695.2020.9278951
[7] B. P. Reddy y P. Ragam, "LoRa Sense: Sensing and Optimization of LoRa Link Behavior Using Path-Loss Models in Open-Cast Mines," CMES - Computer Modeling in Engineering and Sciences, vol. 142, no. 1, pp. 425-466, 2025, doi: 10.32604/cmes.2024.052355. DOI: https://doi.org/10.32604/cmes.2024.052355
[8] A. S. Naik, S. K. Reddy, y G. R. Mandela, "A Systematic Review on Implementation of Internet-of-Things-Based System in Underground Mines to Monitor Environmental Parameters," Journal of The Institution of Engineers (India): Series D, vol. 105, no. 2, pp. 1273-1289, Aug. 2024, doi: 10.1007/s40033-023-00541-3. DOI: https://doi.org/10.1007/s40033-023-00541-3
[9] S. Joy, A. S. Bale, A. M.I., B. C. R., K. A. Patil, y N. P.S., "IoT Based Enhanced Safety Monitoring System for Underground Coal Mines Using LoRa Technology," Lecture Notes in Networks and Systems, vol. 1029, pp. 125-130, 2024, doi: 10.1007/978-3-031-61929-8_18.
[10] D. Kaur, K. K. Saini, y D. Kumar, "Cryptanalysis and enhancement of an authentication protocol for secure multimedia communications in IoT-enabled wireless sensor networks," Multimedia Tools and Applications, vol. 81, no. 27, pp. 39367-39385, Nov. 2022, doi: 10.1007/s11042-022-12088-8. DOI: https://doi.org/10.1007/s11042-022-12088-8
[11] S. Kama, T. Noushin, y S. Tabassum, "IoT based Smart Helmet for Automated and Multi-parametric Monitoring of Underground Miners' Health Hazards," 2022 15th IEEE Dallas Circuits and Systems Conference (DCAS 2022), Richardson, TX, USA, Jun. 2022, doi: 10.1109/DCAS53974.2022.9845621. DOI: https://doi.org/10.1109/DCAS53974.2022.9845621
[12] N. Yang, "Communication performance optimization of coal mine goaf LoRa AD hoc network sensor system based on tree topology," J. Phys.: Conf. Ser., vol. 2625, no. 1, Art. no. 012059, 2023, doi: 10.1088/1742-6596/2625/1/012059. DOI: https://doi.org/10.1088/1742-6596/2625/1/012059
[13] S. Joy, A. S. Bale, M. I. Anju, B. C. R., K. A. Patil, and N. P. S., "IoT Based Enhanced Safety Monitoring System for Underground Coal Mines Using LoRa Technology," in Lect. Notes Netw. Syst., vol. 1029, pp. 125–130, 2024, doi: 10.1007/978-3-031-61929-8_18. DOI: https://doi.org/10.1007/978-3-031-61929-8_18
[14] D. Nagadevi, B. Mukesh, J. S. Ganesh, and E. S. T. Goud, "Prototype of Coal Mines Safety Monitoring and Alerting System Using IoT," in Proc. 2024 7th Int. Conf. Circuit Power Comput. Technol. (ICCPCT), Kollam, India, pp. 1369–1374, Aug. 2024, doi: 10.1109/ICCPCT61902.2024.10672846. DOI: https://doi.org/10.1109/ICCPCT61902.2024.10672846
[15] B. Zhao and K. Zhu, "Temperature and humidity monitoring and communication system for coal mine working based on LoRa," Int. J. Sens. Netw., vol. 47, no. 1, pp. 36–46, 2025, doi: 10.1504/IJSNET.2025.143901. DOI: https://doi.org/10.1504/IJSNET.2025.143901
[16] M. S. Salahudeen, K. Rahul, N. S. Kurian, H. V. Vardhan, and M. Amirthavalli, "Smart PPE using LoRaWAN Technology," in Proc. 6th Int. Conf. Inventive Comput. Technol. (ICICT), Lalitpur, pp. 1272–1279, Apr. 2023, doi: 10.1109/ICICT57646.2023.10134134. DOI: https://doi.org/10.1109/ICICT57646.2023.10134134
[17] J. H. Zhang, M. Chen, Y. Liu, and P. Yao, "A Network Communication Frequency Routing Protocol of Coal Mine Safety Monitoring System Based on Wireless Narrowband Data Communication Network," Mob. Inf. Syst., vol. 2022, Art. no. 4906599, 2022, doi: 10.1155/2022/4906599. DOI: https://doi.org/10.1155/2022/4906599
[18] W. Chen and X. Wang, "Coal Mine Safety Intelligent Monitoring Based on Wireless Sensor Network," IEEE Sens. J., vol. 21, no. 22, pp. 25465–25471, Nov. 2021, doi: 10.1109/JSEN.2020.3046287. DOI: https://doi.org/10.1109/JSEN.2020.3046287
[19] A. Bhat, A. V. Bhardwaj, N. S. Kotian, and S. G. Prabhu, "Efficient Real-Time Monitoring and Fire Prevention Strategies in Bord-and-Pillar Coal Mines Utilizing Wireless Sensor Networks," in Proc. 2nd IEEE Int. Conf. Data Sci. Netw. Secur. (ICDSNS), Tiptur, India, Jul. 2024, doi: 10.1109/ICDSNS62112.2024.10690931. DOI: https://doi.org/10.1109/ICDSNS62112.2024.10690931
[20] F. Medina, H. Ruiz, J. Espíndola, and E. Avendaño, "Deploying IIoT Systems for Long-Term Planning in Underground Mining: A Focus on the Monitoring of Explosive Atmospheres," Appl. Sci., vol. 14, no. 3, Art. no. 1116, Feb. 2024, doi: 10.3390/app14031116. DOI: https://doi.org/10.3390/app14031116
[21] A. Ranjan, H. B. Sahu, P. Misra, Y. Zhao y H. Sun, “RSSI or LQI: Insights from real-time deployments for underground sensing and applications,” Proc. IEEE INFOCOM Workshops, Toronto, Canada, pp. 1231–1236, Jul. 2020, doi: 10.1109/INFOCOMWKSHPS50562.2020.9162754. DOI: https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162754
[22] H. Wang, G. Zhou, L. Bhatia, Z. Zhu, W. Li y J. A. McCann, “Energy-Neutral and QoS-Aware Protocol in Wireless Sensor Networks for Health Monitoring of Hoisting Systems,” IEEE Trans. Ind. Inform., vol. 16, no. 8, pp. 5543–5553, Aug. 2020, doi: 10.1109/TII.2020.2969218. DOI: https://doi.org/10.1109/TII.2020.2969218
[23] Q. Zhao, W. Yang y L. Zhang, “Energy-Efficient Resource Allocation for NOMA-Based Heterogeneous 5G Mine Internet of Things,” IEEE Access, vol. 10, pp. 67437–67450, 2022, doi: 10.1109/ACCESS.2022.3184798. DOI: https://doi.org/10.1109/ACCESS.2022.3184798
[24] L. Zhang, W. Yang, B. Hao, Z. Yang y Q. Zhao, “Edge Computing Resource Allocation Method for Mining 5G Communication System,” IEEE Access, vol. 11, pp. 49730–49737, 2023, doi: 10.1109/ACCESS.2023.3244242. DOI: https://doi.org/10.1109/ACCESS.2023.3244242
[25] G. Wang, Y. Du, H. Ren, J. Fan y Q. Wu, “Top level design and practice of smart coal mines [智能化煤矿顶层设计研究与实践],” Meitan Xuebao / J. China Coal Soc., vol. 45, no. 6, pp. 1909–1924, Jun. 2020, doi: 10.13225/j.cnki.jccs.ZN20.0284.
[26] W. Chen, X. Yang, W. Fang, W. Zhang y X. Jiang, “Cluster Routing Protocol for Coal Mine Wireless Sensor Network Based on 5G,” in Proc. 2nd Int. Conf. 5G Future Wireless Netw. (5GWN 2019), Changsha, China, LNICST, vol. 278, pp. 60–67, 2019, doi: 10.1007/978-3-030-17513-9_5. DOI: https://doi.org/10.1007/978-3-030-17513-9_5
[27] W. Chen, B. Zhang, X. Yang, W. Fang, W. Zhang y X. Jiang, “C-EEUC: a Cluster Routing Protocol for Coal Mine Wireless Sensor Network Based on Fog Computing and 5G,” Mobile Netw. Appl., vol. 27, no. 5, pp. 1853–1866, Oct. 2022, doi: 10.1007/s11036-019-01401-9. DOI: https://doi.org/10.1007/s11036-019-01401-9
[28] L. Wen, W. Wu y Q. Li, “Study on intelligent coal mine construction scheme of F5G architecture [矿用 F5G 架构的智能化煤矿建设方案研究],” Meitan Kexue Jishu / Coal Sci. Technol., vol. 50, no. 11, pp. 176–182, Nov. 2022, doi: 10.13199/j.cnki.cst.2021-0355.
[29] G. Wang, H. Ren, G. Zhao, et al., “Research and practice of intelligent coal mine technology systems in China,” Int. J. Coal Sci. Technol., vol. 9, p. 24, 2022, doi: 10.1007/s40789-022-00491-3. DOI: https://doi.org/10.1007/s40789-022-00491-3
[30] C. Ananth, B. S. Revathi, I. Poonguzhali, A. Anitha, y T. Ananth Kumar, “Wearable Smart Jacket for Coal Miners Using IoT,” en Proc. Int. Conf. Technol. Adv. Comput. Sci. (ICTACS), Tashkent, Uzbekistán, 10–12 oct. 2022, pp. 669–672, doi: 10.1109/ICTACS56270.2022.9987834. DOI: https://doi.org/10.1109/ICTACS56270.2022.9987834
[31] S. B. Lenin, R. Priyadharshni, S. Mohanram, y S. A. Kumar, “Wireless Coal Mine Monitoring System based on ESP-NOW Protocol for Real-Time Data Acquisition and Analysis,” J. Eng. Sci. Technol. Rev., vol. 17, no. 2, pp. 16–22, 2024, doi: 10.25103/jestr.172.03. DOI: https://doi.org/10.25103/jestr.172.03
[32] M. Kurvey, M. Pawaskar, S. Nikam, R. Jagtap, S. Bhandary, y A. Acharya, “Establishing Malla Network to Transfer and Visualize Data for Safety of Underground Miners,” en Proc. 3rd Int. Conf. Pervasive Comput. Social Netw. (ICPCSN), Salem, India, 19–20 jun. 2023, pp. 1134–1139, doi: 10.1109/ICPCSN58827.2023.00192. DOI: https://doi.org/10.1109/ICPCSN58827.2023.00192
[33] R. Hussain, F. M. Zakai, y A. Iqbal, “Demystifying Mining Sustainability Through Efficient and Low Cost IoT Based Safety Implementations,” en Proc. 5th Glob. Conf. Wireless Opt. Technol. (GCWOT), Málaga, España, 14–17 feb. 2022, doi: 10.1109/GCWOT53057.2022.9772903. DOI: https://doi.org/10.1109/GCWOT53057.2022.9772903
[34] A. Marathe, R. Deshpande, P. Choudhary, M. Deshpande, A. Dhangar, y T. Dhangar, “Coal Mining Surveillance Robot,” en Proc. 3rd Int. Conf. Appl. Artif. Intell. Comput. (ICAAIC), Salem, India, 5–7 jun. 2024, pp. 1940–1944, doi: 10.1109/ICAAIC60222.2024.10575836. DOI: https://doi.org/10.1109/ICAAIC60222.2024.10575836
[35] A. Sharma, A. Kumar, Y. Gupta, A. Nain, R. Patel, y A. Alkhayyat, “Mine Safety Monitoring System Based on WSN,” en Lect. Notes Netw. Syst., vol. 617, pp. 93–102, 2023, doi: 10.1007/978-981-19-9512-5_9. DOI: https://doi.org/10.1007/978-981-19-9512-5_9
[36] M. H. Ali, W. K. Al-Azzawi, M. Jaber, S. K. Abd, A. Alkhayyat, y Z. I. Rasool, “Improving coal mine safety with internet of things (IoT) based Dynamic Sensor Information Control System,” Phys. Chem. Earth, vol. 128, art. 103225, dic. 2022, doi: 10.1016/j.pce.2022.103225. DOI: https://doi.org/10.1016/j.pce.2022.103225
[37] W. Ding, R. Xu, B. Xu, C. Xiao, y L. Zhao, “A performance comparison of routing protocols for tramcars in mining industry,” en Proc. IEEE iThings/GreenCom/CPSCom/SmartData, Atlanta, GA, EE. UU., 14–17 jul. 2019, pp. 1148–1153, doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00194. DOI: https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00194
[38] H. Jiang, X. Liu, S. Xiao, C. Tang, y W. Chen, “Physarum-Inspired Autonomous Optimized Routing Protocol for Coal Mine MANET,” Wirel. Commun. Mob. Comput., vol. 2020, art. 8816718, 2020, doi: 10.1155/2020/8816718. DOI: https://doi.org/10.1155/2020/8816718
[39] M. R. Joel, C. S. Ranganathan, L. P. Narendruni, S. Srinivasan, y N. Latha, “MQTT Client Protocol-based Effective Coal Mine Management System using IoT,” en Proc. 2nd Int. Conf. Smart Technol. Smart Nation (SmartTechCon), Singapur, 18–19 ago. 2023, pp. 328–332, doi: 10.1109/SmartTechCon57526.2023.10391302. DOI: https://doi.org/10.1109/SmartTechCon57526.2023.10391302
[40] C. Ma et al., “The Research of Ultra-Low Delay Gateway for Underground Remote Control,” Radioengineering, vol. 33, no. 3, pp. 452–462, Sep. 2024, doi: 10.13164/re.2024.0452. DOI: https://doi.org/10.13164/re.2024.0452
[41] J. Zhang, Y. Liu, Y. Shao, and Y. Lin, “A multi-path optimal communication (MPOC) technology of coal mine safety monitoring system,” in Proc. SPIE 12127, Int. Conf. Intelligent Equipment and Special Robots (ICIESR), Qingdao, China, Oct. 2021, Art. no. 121272R, doi: 10.1117/12.2624824. DOI: https://doi.org/10.1117/12.2624824
[42] J. Zhang, K. He, C. Chen, and G. Zhao, “Controlled C-VLAN Technology in Mining 10 Gigabit Industrial Networks,” Gornaya Promyshlennost, no. 5, pp. 65–69, 2021, doi: 10.30686/1609-9192-2021-5-65-69. DOI: https://doi.org/10.30686/1609-9192-2021-5-65-69
[43] A. V. Novikov, K. V. Panevnikov, and I. V. Pisarev, “Multi-functional coal mine safety system: Visualisation of events (mining processes) from the miner's workplace,” in Proc. IEEE ANDESCON 2024, Cusco, Peru, Sep. 2024, doi: 10.1109/ANDESCON61840.2024.10755861. DOI: https://doi.org/10.1109/ANDESCON61840.2024.10755861
[44] F. Medina, O. Montañez, C. Suancha, E. Avendaño, and S. Céspedes, “Evaluating Propagation Models for IIoT in Underground Mining: an Experimental Comparative Study in Underground Coal Mines,” Meitan Kexue Jishu/Coal Sci. Technol., vol. 48, no. 7, pp. 109–117, Jun. 2020, doi: 10.13199/j.cnki.cst.2020.07.010.
[45] J. Qian and Q. Hu, “Construction routes and practice of intelligent coal mine [智能煤矿建设路线与工程实践],” Sensors, vol. 24, no. 18, Art. no. 5904, Sep. 2024, doi: 10.3390/s24185904.
[46] A. Sharma et al., “Gas Detection and Classification Using Multimodal Data Based on Federated Learning,” Sensors, vol. 24, no. 21, Art. no. 6866, Nov. 2024, doi: 10.3390/s24216866. DOI: https://doi.org/10.3390/s24185904
[47] S. Sun et al., “Research on Obstacle-Avoidance Trajectory Planning for Drill and Anchor Materials Handling by a Mechanical Arm on a Coal Mine Drilling and Anchoring Robot,” Sensors, vol. 24, no. 20, Art. no. 6709, Oct. 2024, doi: 10.3390/s24206709. DOI: https://doi.org/10.3390/s24216866
[48] X. Kang, X. Xie, and K. Zeng, “A New Self-Sensing Fiber Optic Anchor to Monitor Bolt Axial Force and Identify Loose Zones in the Surrounding Rock of Open TBM Tunnels,” Int. J. Comput. Intell. Syst., vol. 18, no. 1, Art. no. 16, Dec. 2025, doi: 10.1007/s44196-025-00742-6.
[49] B. Lalithadevi and S. Krishnaveni, “ExAIRFC-GSDC: An Advanced Machine Learning-Based Interpretable Framework for Accurate Gas Leakage Detection and Classification,” Comput. Geosci., vol. 194, Art. no. 105744, Dec. 2025, doi: 10.1016/j.cageo.2024.105744. DOI: https://doi.org/10.1007/s44196-025-00742-6
[50] C. Han et al., “Intelligent fault prediction with wavelet-SVM fusion in coal mine,” Comput. Geosci., vol. 194, Dec. 2025, Art. no. 105744, doi: 10.1016/j.cageo.2024.105744. DOI: https://doi.org/10.1016/j.cageo.2024.105744
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Mundo FESC Journal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

