Revisión de Protocolos de Comunicación Aplicados a la Minería de Carbón: Limitaciones, Tendencias e Innovaciones para Entornos Críticos

Autores/as

DOI:

https://doi.org/10.61799/2216-0388.1799

Palabras clave:

Comunicación industrial, Innovación tecnológica, Minería subterránea, Protocolos de comunicación, Tendencias tecnológicas, Minas de carbón

Resumen

En la actualidad, los sistemas de comunicación industrial desempeñan un papel fundamental en la eficiencia y seguridad de los procesos mineros, especialmente en entornos subterráneos como las minas de carbón, donde las condiciones son complejas. El objetivo de este artículo es analizar las principales limitaciones, tendencias e innovaciones en protocolos de comunicación industrial aplicados a la minería de carbón. La metodología consistió en una revisión bibliográfica sistemática de artículos publicados entre 2019 y 2025, obtenidos principalmente de la base de datos Scopus. Los artículos fueron analizados de forma cualitativa para identificar las tendencias, tecnologías emergentes, desafíos comunes y propuestas aplicadas en el contexto minero. Los resultados evidencian una tendencia al uso de sistemas como ZIGBEE, como también redes robustas de wifi. Por otro lado, se están probando nuevas tecnologías como las redes 5G y el uso del microcontrolador ESP32 como una alternativa económica con su protocolo ESP-now. Asimismo, se destaca la tendencia hacia soluciones basadas en el Internet de las Cosas y redes tipo malla adaptadas a túneles subterráneos. Se concluye que la evolución de los protocolos de comunicación industrial representa una oportunidad para fortalecer la seguridad, optimizar la operación minera y avanzar hacia una minería más segura e inteligente.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

[1] Z. Lian, X. Yuan, F. Gao, Y. Liao, Y. Guo, y R. Zhao, "Networked intelligent sensing method for powered support," Meitan Xuebao/Journal of the China Coal Society, vol. 45, no. 6, pp. 2078-2089, Jun. 2020, doi: 10.13225/j.cnki.jccs.ZN20.0361.

[2] X. Jia, F. Shi, Y. Guan, S. Tang, y M. Tong, "Zigbee-based wireless gas monitoring sensor alarm system in coal mine," IOP Conference Series: Earth and Environmental Science, vol. 446, no. 2, Art. no. 022012, Mar. 2020, doi: 10.1088/1755-1315/446/2/022012. DOI: https://doi.org/10.1088/1755-1315/446/2/022012

[3] P. N.R., C. N., H. L.N., K. K.J., y P. K.V., "IOT based Worker Safety Monitoring and Alerting System in Coal Mines," 14th International Conference on Advances in Computing, Control, and Telecommunication Technologies (ACT 2023), Hyderabad, India, Jun. 2023, pp. 1826-1831.

[4] H. Chen y P. Li, "Intelligent Positioning Boots for Miners' Fall Monitoring Based on ZigBee Communication Protocol and ADXL345 Acceleration Sensor," 2022 IEEE Asia-Pacific Conference on Image Processing, Electronics and Computers (IPEC 2022), Dalian, China, Apr. 2022, pp. 304-307, doi: 10.1109/IPEC54454.2022.9777577. DOI: https://doi.org/10.1109/IPEC54454.2022.9777577

[5] A. Wang, J. Gao, L. Meng, W. Wu, Y. Qin, J. Pei, y L. Cui, "Design of Intelligent Coalmine Tunnel Collapse Warning System Based on Can Bus and Zigbee Technology," 7th International Conference on Computing and Artificial Intelligence (ICCAI 2021), Virtual, Apr. 2021, pp. 493-498, doi: 10.1145/3467707.3467784. DOI: https://doi.org/10.1145/3467707.3467784

[6] J. Li, M. Li, F. Yan, y D. Miao, "Key technologies of data monitoring for coal machinery equipment in the intelligent IoT environment," 10th IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems (CYBER 2020), Xi'an, China, Oct. 2020, pp. 364-369, doi: 10.1109/CYBER50695.2020.9278951. DOI: https://doi.org/10.1109/CYBER50695.2020.9278951

[7] B. P. Reddy y P. Ragam, "LoRa Sense: Sensing and Optimization of LoRa Link Behavior Using Path-Loss Models in Open-Cast Mines," CMES - Computer Modeling in Engineering and Sciences, vol. 142, no. 1, pp. 425-466, 2025, doi: 10.32604/cmes.2024.052355. DOI: https://doi.org/10.32604/cmes.2024.052355

[8] A. S. Naik, S. K. Reddy, y G. R. Mandela, "A Systematic Review on Implementation of Internet-of-Things-Based System in Underground Mines to Monitor Environmental Parameters," Journal of The Institution of Engineers (India): Series D, vol. 105, no. 2, pp. 1273-1289, Aug. 2024, doi: 10.1007/s40033-023-00541-3. DOI: https://doi.org/10.1007/s40033-023-00541-3

[9] S. Joy, A. S. Bale, A. M.I., B. C. R., K. A. Patil, y N. P.S., "IoT Based Enhanced Safety Monitoring System for Underground Coal Mines Using LoRa Technology," Lecture Notes in Networks and Systems, vol. 1029, pp. 125-130, 2024, doi: 10.1007/978-3-031-61929-8_18.

[10] D. Kaur, K. K. Saini, y D. Kumar, "Cryptanalysis and enhancement of an authentication protocol for secure multimedia communications in IoT-enabled wireless sensor networks," Multimedia Tools and Applications, vol. 81, no. 27, pp. 39367-39385, Nov. 2022, doi: 10.1007/s11042-022-12088-8. DOI: https://doi.org/10.1007/s11042-022-12088-8

[11] S. Kama, T. Noushin, y S. Tabassum, "IoT based Smart Helmet for Automated and Multi-parametric Monitoring of Underground Miners' Health Hazards," 2022 15th IEEE Dallas Circuits and Systems Conference (DCAS 2022), Richardson, TX, USA, Jun. 2022, doi: 10.1109/DCAS53974.2022.9845621. DOI: https://doi.org/10.1109/DCAS53974.2022.9845621

[12] N. Yang, "Communication performance optimization of coal mine goaf LoRa AD hoc network sensor system based on tree topology," J. Phys.: Conf. Ser., vol. 2625, no. 1, Art. no. 012059, 2023, doi: 10.1088/1742-6596/2625/1/012059. DOI: https://doi.org/10.1088/1742-6596/2625/1/012059

[13] S. Joy, A. S. Bale, M. I. Anju, B. C. R., K. A. Patil, and N. P. S., "IoT Based Enhanced Safety Monitoring System for Underground Coal Mines Using LoRa Technology," in Lect. Notes Netw. Syst., vol. 1029, pp. 125–130, 2024, doi: 10.1007/978-3-031-61929-8_18. DOI: https://doi.org/10.1007/978-3-031-61929-8_18

[14] D. Nagadevi, B. Mukesh, J. S. Ganesh, and E. S. T. Goud, "Prototype of Coal Mines Safety Monitoring and Alerting System Using IoT," in Proc. 2024 7th Int. Conf. Circuit Power Comput. Technol. (ICCPCT), Kollam, India, pp. 1369–1374, Aug. 2024, doi: 10.1109/ICCPCT61902.2024.10672846. DOI: https://doi.org/10.1109/ICCPCT61902.2024.10672846

[15] B. Zhao and K. Zhu, "Temperature and humidity monitoring and communication system for coal mine working based on LoRa," Int. J. Sens. Netw., vol. 47, no. 1, pp. 36–46, 2025, doi: 10.1504/IJSNET.2025.143901. DOI: https://doi.org/10.1504/IJSNET.2025.143901

[16] M. S. Salahudeen, K. Rahul, N. S. Kurian, H. V. Vardhan, and M. Amirthavalli, "Smart PPE using LoRaWAN Technology," in Proc. 6th Int. Conf. Inventive Comput. Technol. (ICICT), Lalitpur, pp. 1272–1279, Apr. 2023, doi: 10.1109/ICICT57646.2023.10134134. DOI: https://doi.org/10.1109/ICICT57646.2023.10134134

[17] J. H. Zhang, M. Chen, Y. Liu, and P. Yao, "A Network Communication Frequency Routing Protocol of Coal Mine Safety Monitoring System Based on Wireless Narrowband Data Communication Network," Mob. Inf. Syst., vol. 2022, Art. no. 4906599, 2022, doi: 10.1155/2022/4906599. DOI: https://doi.org/10.1155/2022/4906599

[18] W. Chen and X. Wang, "Coal Mine Safety Intelligent Monitoring Based on Wireless Sensor Network," IEEE Sens. J., vol. 21, no. 22, pp. 25465–25471, Nov. 2021, doi: 10.1109/JSEN.2020.3046287. DOI: https://doi.org/10.1109/JSEN.2020.3046287

[19] A. Bhat, A. V. Bhardwaj, N. S. Kotian, and S. G. Prabhu, "Efficient Real-Time Monitoring and Fire Prevention Strategies in Bord-and-Pillar Coal Mines Utilizing Wireless Sensor Networks," in Proc. 2nd IEEE Int. Conf. Data Sci. Netw. Secur. (ICDSNS), Tiptur, India, Jul. 2024, doi: 10.1109/ICDSNS62112.2024.10690931. DOI: https://doi.org/10.1109/ICDSNS62112.2024.10690931

[20] F. Medina, H. Ruiz, J. Espíndola, and E. Avendaño, "Deploying IIoT Systems for Long-Term Planning in Underground Mining: A Focus on the Monitoring of Explosive Atmospheres," Appl. Sci., vol. 14, no. 3, Art. no. 1116, Feb. 2024, doi: 10.3390/app14031116. DOI: https://doi.org/10.3390/app14031116

[21] A. Ranjan, H. B. Sahu, P. Misra, Y. Zhao y H. Sun, “RSSI or LQI: Insights from real-time deployments for underground sensing and applications,” Proc. IEEE INFOCOM Workshops, Toronto, Canada, pp. 1231–1236, Jul. 2020, doi: 10.1109/INFOCOMWKSHPS50562.2020.9162754. DOI: https://doi.org/10.1109/INFOCOMWKSHPS50562.2020.9162754

[22] H. Wang, G. Zhou, L. Bhatia, Z. Zhu, W. Li y J. A. McCann, “Energy-Neutral and QoS-Aware Protocol in Wireless Sensor Networks for Health Monitoring of Hoisting Systems,” IEEE Trans. Ind. Inform., vol. 16, no. 8, pp. 5543–5553, Aug. 2020, doi: 10.1109/TII.2020.2969218. DOI: https://doi.org/10.1109/TII.2020.2969218

[23] Q. Zhao, W. Yang y L. Zhang, “Energy-Efficient Resource Allocation for NOMA-Based Heterogeneous 5G Mine Internet of Things,” IEEE Access, vol. 10, pp. 67437–67450, 2022, doi: 10.1109/ACCESS.2022.3184798. DOI: https://doi.org/10.1109/ACCESS.2022.3184798

[24] L. Zhang, W. Yang, B. Hao, Z. Yang y Q. Zhao, “Edge Computing Resource Allocation Method for Mining 5G Communication System,” IEEE Access, vol. 11, pp. 49730–49737, 2023, doi: 10.1109/ACCESS.2023.3244242. DOI: https://doi.org/10.1109/ACCESS.2023.3244242

[25] G. Wang, Y. Du, H. Ren, J. Fan y Q. Wu, “Top level design and practice of smart coal mines [智能化煤矿顶层设计研究与实践],” Meitan Xuebao / J. China Coal Soc., vol. 45, no. 6, pp. 1909–1924, Jun. 2020, doi: 10.13225/j.cnki.jccs.ZN20.0284.

[26] W. Chen, X. Yang, W. Fang, W. Zhang y X. Jiang, “Cluster Routing Protocol for Coal Mine Wireless Sensor Network Based on 5G,” in Proc. 2nd Int. Conf. 5G Future Wireless Netw. (5GWN 2019), Changsha, China, LNICST, vol. 278, pp. 60–67, 2019, doi: 10.1007/978-3-030-17513-9_5. DOI: https://doi.org/10.1007/978-3-030-17513-9_5

[27] W. Chen, B. Zhang, X. Yang, W. Fang, W. Zhang y X. Jiang, “C-EEUC: a Cluster Routing Protocol for Coal Mine Wireless Sensor Network Based on Fog Computing and 5G,” Mobile Netw. Appl., vol. 27, no. 5, pp. 1853–1866, Oct. 2022, doi: 10.1007/s11036-019-01401-9. DOI: https://doi.org/10.1007/s11036-019-01401-9

[28] L. Wen, W. Wu y Q. Li, “Study on intelligent coal mine construction scheme of F5G architecture [矿用 F5G 架构的智能化煤矿建设方案研究],” Meitan Kexue Jishu / Coal Sci. Technol., vol. 50, no. 11, pp. 176–182, Nov. 2022, doi: 10.13199/j.cnki.cst.2021-0355.

[29] G. Wang, H. Ren, G. Zhao, et al., “Research and practice of intelligent coal mine technology systems in China,” Int. J. Coal Sci. Technol., vol. 9, p. 24, 2022, doi: 10.1007/s40789-022-00491-3. DOI: https://doi.org/10.1007/s40789-022-00491-3

[30] C. Ananth, B. S. Revathi, I. Poonguzhali, A. Anitha, y T. Ananth Kumar, “Wearable Smart Jacket for Coal Miners Using IoT,” en Proc. Int. Conf. Technol. Adv. Comput. Sci. (ICTACS), Tashkent, Uzbekistán, 10–12 oct. 2022, pp. 669–672, doi: 10.1109/ICTACS56270.2022.9987834. DOI: https://doi.org/10.1109/ICTACS56270.2022.9987834

[31] S. B. Lenin, R. Priyadharshni, S. Mohanram, y S. A. Kumar, “Wireless Coal Mine Monitoring System based on ESP-NOW Protocol for Real-Time Data Acquisition and Analysis,” J. Eng. Sci. Technol. Rev., vol. 17, no. 2, pp. 16–22, 2024, doi: 10.25103/jestr.172.03. DOI: https://doi.org/10.25103/jestr.172.03

[32] M. Kurvey, M. Pawaskar, S. Nikam, R. Jagtap, S. Bhandary, y A. Acharya, “Establishing Malla Network to Transfer and Visualize Data for Safety of Underground Miners,” en Proc. 3rd Int. Conf. Pervasive Comput. Social Netw. (ICPCSN), Salem, India, 19–20 jun. 2023, pp. 1134–1139, doi: 10.1109/ICPCSN58827.2023.00192. DOI: https://doi.org/10.1109/ICPCSN58827.2023.00192

[33] R. Hussain, F. M. Zakai, y A. Iqbal, “Demystifying Mining Sustainability Through Efficient and Low Cost IoT Based Safety Implementations,” en Proc. 5th Glob. Conf. Wireless Opt. Technol. (GCWOT), Málaga, España, 14–17 feb. 2022, doi: 10.1109/GCWOT53057.2022.9772903. DOI: https://doi.org/10.1109/GCWOT53057.2022.9772903

[34] A. Marathe, R. Deshpande, P. Choudhary, M. Deshpande, A. Dhangar, y T. Dhangar, “Coal Mining Surveillance Robot,” en Proc. 3rd Int. Conf. Appl. Artif. Intell. Comput. (ICAAIC), Salem, India, 5–7 jun. 2024, pp. 1940–1944, doi: 10.1109/ICAAIC60222.2024.10575836. DOI: https://doi.org/10.1109/ICAAIC60222.2024.10575836

[35] A. Sharma, A. Kumar, Y. Gupta, A. Nain, R. Patel, y A. Alkhayyat, “Mine Safety Monitoring System Based on WSN,” en Lect. Notes Netw. Syst., vol. 617, pp. 93–102, 2023, doi: 10.1007/978-981-19-9512-5_9. DOI: https://doi.org/10.1007/978-981-19-9512-5_9

[36] M. H. Ali, W. K. Al-Azzawi, M. Jaber, S. K. Abd, A. Alkhayyat, y Z. I. Rasool, “Improving coal mine safety with internet of things (IoT) based Dynamic Sensor Information Control System,” Phys. Chem. Earth, vol. 128, art. 103225, dic. 2022, doi: 10.1016/j.pce.2022.103225. DOI: https://doi.org/10.1016/j.pce.2022.103225

[37] W. Ding, R. Xu, B. Xu, C. Xiao, y L. Zhao, “A performance comparison of routing protocols for tramcars in mining industry,” en Proc. IEEE iThings/GreenCom/CPSCom/SmartData, Atlanta, GA, EE. UU., 14–17 jul. 2019, pp. 1148–1153, doi: 10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00194. DOI: https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00194

[38] H. Jiang, X. Liu, S. Xiao, C. Tang, y W. Chen, “Physarum-Inspired Autonomous Optimized Routing Protocol for Coal Mine MANET,” Wirel. Commun. Mob. Comput., vol. 2020, art. 8816718, 2020, doi: 10.1155/2020/8816718. DOI: https://doi.org/10.1155/2020/8816718

[39] M. R. Joel, C. S. Ranganathan, L. P. Narendruni, S. Srinivasan, y N. Latha, “MQTT Client Protocol-based Effective Coal Mine Management System using IoT,” en Proc. 2nd Int. Conf. Smart Technol. Smart Nation (SmartTechCon), Singapur, 18–19 ago. 2023, pp. 328–332, doi: 10.1109/SmartTechCon57526.2023.10391302. DOI: https://doi.org/10.1109/SmartTechCon57526.2023.10391302

[40] C. Ma et al., “The Research of Ultra-Low Delay Gateway for Underground Remote Control,” Radioengineering, vol. 33, no. 3, pp. 452–462, Sep. 2024, doi: 10.13164/re.2024.0452. DOI: https://doi.org/10.13164/re.2024.0452

[41] J. Zhang, Y. Liu, Y. Shao, and Y. Lin, “A multi-path optimal communication (MPOC) technology of coal mine safety monitoring system,” in Proc. SPIE 12127, Int. Conf. Intelligent Equipment and Special Robots (ICIESR), Qingdao, China, Oct. 2021, Art. no. 121272R, doi: 10.1117/12.2624824. DOI: https://doi.org/10.1117/12.2624824

[42] J. Zhang, K. He, C. Chen, and G. Zhao, “Controlled C-VLAN Technology in Mining 10 Gigabit Industrial Networks,” Gornaya Promyshlennost, no. 5, pp. 65–69, 2021, doi: 10.30686/1609-9192-2021-5-65-69. DOI: https://doi.org/10.30686/1609-9192-2021-5-65-69

[43] A. V. Novikov, K. V. Panevnikov, and I. V. Pisarev, “Multi-functional coal mine safety system: Visualisation of events (mining processes) from the miner's workplace,” in Proc. IEEE ANDESCON 2024, Cusco, Peru, Sep. 2024, doi: 10.1109/ANDESCON61840.2024.10755861. DOI: https://doi.org/10.1109/ANDESCON61840.2024.10755861

[44] F. Medina, O. Montañez, C. Suancha, E. Avendaño, and S. Céspedes, “Evaluating Propagation Models for IIoT in Underground Mining: an Experimental Comparative Study in Underground Coal Mines,” Meitan Kexue Jishu/Coal Sci. Technol., vol. 48, no. 7, pp. 109–117, Jun. 2020, doi: 10.13199/j.cnki.cst.2020.07.010.

[45] J. Qian and Q. Hu, “Construction routes and practice of intelligent coal mine [智能煤矿建设路线与工程实践],” Sensors, vol. 24, no. 18, Art. no. 5904, Sep. 2024, doi: 10.3390/s24185904.

[46] A. Sharma et al., “Gas Detection and Classification Using Multimodal Data Based on Federated Learning,” Sensors, vol. 24, no. 21, Art. no. 6866, Nov. 2024, doi: 10.3390/s24216866. DOI: https://doi.org/10.3390/s24185904

[47] S. Sun et al., “Research on Obstacle-Avoidance Trajectory Planning for Drill and Anchor Materials Handling by a Mechanical Arm on a Coal Mine Drilling and Anchoring Robot,” Sensors, vol. 24, no. 20, Art. no. 6709, Oct. 2024, doi: 10.3390/s24206709. DOI: https://doi.org/10.3390/s24216866

[48] X. Kang, X. Xie, and K. Zeng, “A New Self-Sensing Fiber Optic Anchor to Monitor Bolt Axial Force and Identify Loose Zones in the Surrounding Rock of Open TBM Tunnels,” Int. J. Comput. Intell. Syst., vol. 18, no. 1, Art. no. 16, Dec. 2025, doi: 10.1007/s44196-025-00742-6.

[49] B. Lalithadevi and S. Krishnaveni, “ExAIRFC-GSDC: An Advanced Machine Learning-Based Interpretable Framework for Accurate Gas Leakage Detection and Classification,” Comput. Geosci., vol. 194, Art. no. 105744, Dec. 2025, doi: 10.1016/j.cageo.2024.105744. DOI: https://doi.org/10.1007/s44196-025-00742-6

[50] C. Han et al., “Intelligent fault prediction with wavelet-SVM fusion in coal mine,” Comput. Geosci., vol. 194, Dec. 2025, Art. no. 105744, doi: 10.1016/j.cageo.2024.105744. DOI: https://doi.org/10.1016/j.cageo.2024.105744

Descargas

Publicado

2025-09-01

Número

Sección

Artículo Originales

Cómo citar

Gómez Monsalve, P. A., Berrio Marin, H. J. ., & Villalobos Mendoza, V. D. (2025). Revisión de Protocolos de Comunicación Aplicados a la Minería de Carbón: Limitaciones, Tendencias e Innovaciones para Entornos Críticos. Mundo FESC, 15(33), 49-73. https://doi.org/10.61799/2216-0388.1799